"Perfect" designer chromosome V and behavior of a ring derivative
- PMID: 28280151
- DOI: 10.1126/science.aaf4704
"Perfect" designer chromosome V and behavior of a ring derivative
Abstract
Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
Copyright © 2017, American Association for the Advancement of Science.
Comment in
-
Synthetic yeast chromosomes help probe mysteries of evolution.Nature. 2017 Mar 9;543(7645):298-299. doi: 10.1038/nature.2017.21615. Nature. 2017. PMID: 28300123 No abstract available.
-
Synthetic Biology: Building a custom eukaryotic genome de novo.Nat Rev Genet. 2017 Apr 12;18(5):274. doi: 10.1038/nrg.2017.30. Nat Rev Genet. 2017. PMID: 28400600 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases