Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 23:8:180.
doi: 10.3389/fimmu.2017.00180. eCollection 2017.

Myeloid and T Cell-Derived TNF Protects against Central Nervous System Tuberculosis

Affiliations

Myeloid and T Cell-Derived TNF Protects against Central Nervous System Tuberculosis

Nai-Jen Hsu et al. Front Immunol. .

Abstract

Tuberculosis of the central nervous system (CNS-TB) is a devastating complication of tuberculosis, and tumor necrosis factor (TNF) is crucial for innate immunity and controlling the infection. TNF is produced by many cell types upon activation, in particularly the myeloid and T cells during neuroinflammation. Here we used mice with TNF ablation targeted to myeloid and T cell (MT-TNF-/-) to assess the contribution of myeloid and T cell-derived TNF in immune responses during CNS-TB. These mice exhibited impaired innate immunity and high susceptibility to cerebral Mycobacterium tuberculosis infection, a similar phenotype to complete TNF-deficient mice. Further, MT-TNF-/- mice were not able to control T cell responses and cytokine/chemokine production. Thus, our data suggested that collective TNF production by both myeloid and T cells are required to provide overall protective immunity against CNS-TB infection.

Keywords: CNS; Mycobacterium tuberculosis; T cell; myeloid; tumor necrosis factor.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Tumor necrosis factor (TNF) produced by myeloid and T-cells is essential for protection against Mycobacterium tuberculosis infection in the brain. TNFf/f (black circle), MT-TNF−/− (black square) and TNF−/− (clear circle) mice were infected with M. tuberculosis H37Rv at a dose of 1 × 104–1 × 105 CFU/brain by intracerebral inoculation. Mortality (A) and body weight changes (B) were measured and recorded for the experimental duration (n = 5–7 mice/group). (C) Bacterial burdens in brains, spleens, and lungs were determined at day 14 and 21 postinfection. These data were one representative out of three to five independent experiments (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).
Figure 2
Figure 2
Myeloid cells and T-cells are important source for tumor necrosis factor (TNF)-dependent pathology during cerebral tuberculosis. Hematoxylin and eosin-stained coronal brain sections of TNFf/f, MT-TNF−/−, and TNF−/− mice (n = 5 mice/group) at day 21 postinfection are presented. Ventriculitis of the choroid plexus accompanied by necrosis (box) are observed. Corresponding Ziehl–Neelsen stain revealed acid-fast bacilli (arrows). The images are representatives of three to five independent experiments.
Figure 3
Figure 3
Tumor necrosis factor (TNF) production by myeloid cells and T-cells is required for activation and regulation of innate immunity during cerebral tuberculosis. TNFf/f (black), MT-TNF−/− (gray), and TNF−/− (clear) mice were infected with Mycobacterium tuberculosis H37Rv at a dose of 1 × 104–1 × 105 CFU/brain by intracerebral inoculation. The number of (A) CD11b+CD45low microglia and (B) CD11b+CD45high macrophages and the frequency of (C,D) MHC II and (E,F) CD80 expression was analyzed by flow cytometry at day 21 postinfection. Data (mean ± SEM of five mice) are representative of three repeat experiments (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).
Figure 4
Figure 4
Cerebral tuberculosis-induced T-cell response is dependent on the myeloid and T-cells-derived tumor necrosis factor (TNF). (A) Representative FACS plots of CD3+CD4+ and CD3+CD8+ cells in TNFf/f, MT-TNF−/−, and TNF−/− mice at day 21 after intracerebrally infected with Mycobacterium tuberculosis H37Rv. The number of (B) CD3+CD4+ and (C) CD3+CD8+, and the frequency of (D) CD4+CD44+ and (E) CD8+CD44+ expression, was analyzed by flow cytometry at day 21 postinfection. Data (mean ± SEM of five mice) are representative of three repeat experiments (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).
Figure 5
Figure 5
Myeloid and T-cells-derived tumor necrosis factor (TNF) regulates synthesis of cytokine and chemokines. (A) TNF, (B) IFN-γ, (C) IL-2, (D) IL-6, (E) IL-12p70, (F) MIP-1α, (G) MCP-1, and (H) RANTES cerebral concentrations were measured by ELISA in TNFf/f, MT-TNF−/−, and TNF−/− mice at day 21 after intracerebrally infected with Mycobacterium tuberculosis H37Rv. Data (mean ± SEM of five mice) are representative of at least three repeat experiments (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).

Similar articles

Cited by

References

    1. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity (1995) 2:561–72.10.1016/1074-7613(95)90001-2 - DOI - PubMed
    1. Marino S, Sud D, Plessner H, Lin PL, Chan J, Flynn JL, et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol (2007) 3:1909–24.10.1371/journal.pcbi.0030194 - DOI - PMC - PubMed
    1. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum (2010) 62:340–50.10.1002/art.27271 - DOI - PMC - PubMed
    1. Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML, Court N, et al. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep (2013) 3:1809.10.1038/srep01809 - DOI - PMC - PubMed
    1. Tobin DM, Vary JC, Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell (2010) 140:717–30.10.1016/j.cell.2010.02.013 - DOI - PMC - PubMed

LinkOut - more resources