Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar 9;18(3):592.
doi: 10.3390/ijms18030592.

Potential Neuroprotective Effects of Adiponectin in Alzheimer's Disease

Affiliations
Review

Potential Neuroprotective Effects of Adiponectin in Alzheimer's Disease

Roy Chun-Laam Ng et al. Int J Mol Sci. .

Abstract

The adipocyte-secreted protein adiponectin (APN) has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer's disease (AD). In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated in AD. Emerging insights into the mechanistic roles of adiponectin and AD highlight the potential therapeutic effects for AD through insulin signaling.

Keywords: Alzheimer’s disease; Amyloid-β; adiponectin; cognitive impairments.

PubMed Disclaimer

Conflict of interest statement

Koon-Ho Chan has received research funding support from Merck Pharmaceutical Ltd., Novartis Pharmaceutical Ltd., Bayer HealthCare Ltd., honorarium for invited lectures from Biogen Idec and UCH Pharma Ltd., and sponsorship to attend conferences from Novartis Pharmaceutical Ltd., Bayer HealthCare Ltd., UCH Pharma Ltd. and Sanofi Genzyme. Roy Chun-Laam Ng declares no conflict of interest.

Figures

Figure 1
Figure 1
Pathophysiological roles of adiponectin in Alzheimer’s disease (AD). Schematic outline of neuronal adiponectin signaling in the normal brain (A); and adiponectin-deficient brain (B). Under physiological conditions, adiponectin binds to its receptor and triggers phosphorylation of AMPK which inhibits IRS-1 phosphorylation at serine residues. This increases insulin-mediated IRS-1 phosphorylation at tyrosine residues and promotes downstream Akt-mediated GSK3 inhibition. Inhibition of GSK3 slows down phosphorylation of Tau and APP metabolism. In AD, chronic adiponectin deficiency leads to an increase of IRS-1 phosphorylation at serine residues (e.g., Serine 616). This causes reduced pIRS-1Tyr and results in GSK3 activation. Activated GSK3 enhances Tau phosphorylation and Aβ production in neurons. Arrows denote promotion, T-bars denote inhibition.
Figure 2
Figure 2
Strategies to increase adiponectin signaling in AD neurons. Peripherally, adiponectin expression from the liver, adipocytes and muscle can be increased by administering PPARγ agonist (e.g., pioglitazone) and physical exercise induction. Physical exercise can also increase the transport of low molecular weight nd trimeric adiponectin across the blood-brain barrier (BBB). Administration of adipoR agonists and LMW adiponectin acts on AdipoR1 in neurons and microglia to exert neuroprotection. Green arrow denotes increase, arrows and dash arrows denote promotion, T-bars denote inhibition.

Similar articles

Cited by

References

    1. Stelzmann R.A., Norman Schnitzlein H., Reed Murtagh F. Uber eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. 1907;64:146–148. - PubMed
    1. Glenner G.G., Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. - DOI - PubMed
    1. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. - DOI - PubMed
    1. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., VanEldik L., et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006;26:10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006. - DOI - PMC - PubMed
    1. Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. - DOI - PMC - PubMed