Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 1:322:51-59.
doi: 10.1016/j.taap.2017.03.005. Epub 2017 Mar 7.

Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

Affiliations

Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

Yinxi Wang et al. Toxicol Appl Pharmacol. .

Abstract

Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown.

Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone.

Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100μg/cm2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10μg/cm2) and rotenone (2nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91phox, p47phox and p40phox); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47phox and p67phox translocation assembling active NADPH oxidase.

Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD.

Keywords: NADPH oxidase; Neuroinflammation; Parkinson's disease; Particulate matter; Rotenone; Ultrafine carbon black.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources