Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta)
- PMID: 28283799
- PMCID: PMC5360863
- DOI: 10.1007/s00436-017-5413-2
Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta)
Abstract
Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.
Keywords: Glochidia; Haematocrit; Host; Margaritifera; Metabolic rate; Parasite.
Conflict of interest statement
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Fish were collected with permission from land owners and the County Board Administration in Västra Götaland. Animal care and experimental procedures were approved by the Animal Ethical Board of Sweden (ethical permit 16-2014).
Figures


References
-
- Bauer G, Vogel C (1987) The parasitic stage of the freshwater pearl mussel (Margaritifera margaritifera L.). I. Host response to glochidiosis. Arch Hydrobiol 76:393–402
-
- Bohlin T, Hamrin S, Heggberget TG, Rasmussen G, Saltveit SJ (1989) Electrofishing - Theory and practice with special emphasis on salmonids. Hydrobiologia 173:9–43
-
- Crane AL, Fritts AK, Mathis A, Lisek JC, Barnhart MC. Do gill parasites influence the foraging and antipredator behavior of rainbow darters, Etheostoma caeruleum? Anim Behav. 2011;82:817–823. doi: 10.1016/j.anbehav.2011.07.015. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources