Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;55(1):81-84.
doi: 10.3347/kjp.2017.55.1.81. Epub 2017 Feb 28.

Differential Effects of Two Widely Used Solvents, DMSO and Ethanol, on the Growth and Recovery of Trypanosoma cruzi Epimastigotes in Culture

Affiliations

Differential Effects of Two Widely Used Solvents, DMSO and Ethanol, on the Growth and Recovery of Trypanosoma cruzi Epimastigotes in Culture

Ana María Cevallos et al. Korean J Parasitol. 2017 Feb.

Abstract

Trypanosoma cruzi is the etiological agent of Chagas disease. Epimastigote forms of T. cruzi can be readily cultured in axenic conditions. Ethanol and dimethyl sulfoxide (DMSO) are commonly used solvents employed as vehicles for hydrophobic compounds. In order to produce a reference plot of solvent dependent growth inhibition for T. cruzi research, the growth of epimastigotes was analyzed in the presence of different concentrations of ethanol (0.1-4.0%) and DMSO (0.5-7.5%). The ability of the parasites to resume growth after removal of these solvents was also examined. As expected, both ethanol and DMSO produced a dose-dependent inhibition of cellular growth. Parasites could recover normal growth after 9 days in up to 2% ethanol or 5% DMSO. Since DMSO was better tolerated than ethanol, it is thus recommended to prefer DMSO over ethanol in the case of a similar solubility of a given compound.

Keywords: DMSO; Trypanosoma cruzi; drug screening; ethanol; kinetoplastidia; solvent.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Effects of ethanol and DMSO on T. cruzi growth. The growth of T. cruzi epimastigotes was periodically monitored for 9 days, as indicated. All cultures were started at an initial cellular concentration of 1×106 parasites/ml. LIT medium without solvent was used as a control. (A) Growth curves of epimastigotes cultured in different ethanol concentrations, as indicated. (B) Growth curves of epimastigotes cultured in different DMSO concentrations, as indicated. Plotted values represent the arithmetic means from 3 independent experiments. (C, D) Final cellular density of 9 day-old epimastigotes cultured in the presence of different amounts of the indicated solvents, relative to the solvent-free LIT growth controls.
Fig. 2
Fig. 2
Growth recovery of T. cruzi epimastigotes after treatment with either ethanol (A) or DMSO (B). Nine day-old epimastigote cultures, pre-grown in the presence of the indicated solvents, were washed with PBS and placed in solvent-free LIT medium at an adjusted cellular density of 1 million parasites per ml. Control cultures of cells previously grown in LIT medium were also included. Cellular growth was monitored at the indicated times. Plotted values represent the means of at least 2 independent experiments.

Similar articles

Cited by

References

    1. Köberle F. Chagas’ disease and Chagas’ syndromes: the pathology of American trypanosomiasis. Adv Parasitol. 1968;6:63–116. - PubMed
    1. Weiss LM, Tanowitz HB. Preface to Chagas disease. Adv Parasitol. 2011;76:xxi–xxvi. - PubMed
    1. Bern C, Montgomery SP, Herwaldt BL, Rassi A, Jr, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV, Gilman RH, Reyes PA, Salvatella R, Moore AC. Evaluation and treatment of Chagas disease in the United States: a systematic review. JAMA. 2007;298:2171–2181. - PubMed
    1. Díaz-Urrutia CA, Olea-Azar CA, Zapata GA, Lapier M, Mura F, Aguilera-Venegas B, Arán VJ, López-Múñoz RA, Maya JD. Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity. Spectrochim Acta A Mol Biomol Spectrosc. 2012;95:670–678. - PubMed
    1. Vigueira PA, Ray SS, Martin BA, Ligon MM, Paul KS. Effects of the green tea catechin ( )-epigallocatechin gallate on Trypanosoma brucei. Int J Parasitol Drugs Drug Resist. 2012;2:225–229. - PMC - PubMed

MeSH terms

LinkOut - more resources