Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-b2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition
- PMID: 28286209
- DOI: 10.1053/j.gastro.2017.03.004
Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-b2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition
Abstract
Background & aims: Drugs that inhibit the erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) are the standard treatment of patients with different types of cancer, including HER2-overexpressing gastroesophageal tumors. Unfortunately, cancer cells become resistant to these drugs, so overall these drugs provide little benefit to patients with these tumors. We investigated mechanisms that mediate resistance of esophageal adenocarcinoma (EAC) cells and patient-derived xenograft tumors to ERBB inhibitors.
Methods: We cultured primary tumor cells, isolated from EAC patient samples, and OE19 and OE33 EAC cell lines with trastuzumab (an inhibitor of HER2), with or without pertuzumab (which inhibits dimerization of HER2 with HER3) or a specific antibody against HER3 (anti-HER3). HER2 was knocked down by expression of small hairpin RNAs. In addition, cells were incubated with NRG1-β, a mediator of HER2-HER3 signaling, or A83-01, an inhibitor of transforming growth factor beta (TGFβ) signaling. Cells were analyzed for markers of the epithelial to mesenchymal transition (EMT) using flow cytometry, immunofluorescence, and quantitative reverse transcription polymerase chain reaction. We performed limiting dilution, transwell, and cell viability assays to study the functional effects of HER2 and HER3 inhibition and reactivation. We analyzed publicly available EAC gene expression datasets to correlate expression of ERBB genes with genes encoding epithelial and mesenchymal proteins. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were given subcutaneous injections of AMC-EAC-007B cells and also given injections of single or combined inhibitors; growth of these patient-derived xenograft tumors was quantified.
Results: EAC cells incubated with trastuzumab decreased expression of epithelial markers (CD24, CD29, and CDH1) and increased expression of mesenchymal markers (CXCR4, VIM, ZEB1, SNAI2, and CDH2), compared with cells not exposed to trastuzumab, indicating induction of EMT. Addition of NRG1-β to these cells restored their epithelial phenotype. Incubation of EAC cells with trastuzumab and pertuzumab accelerated the expression of EMT markers, compared with cells incubated with trastuzumab alone. EAC cells cultured for 2 months with a combination of trastuzumab and pertuzumab became resistant to chemotherapeutic agents (5-fluoruracil, carboplatin, cisplatin, eribulin, and paclitaxel), based on their continued viability, which was accompanied with an enhanced migratory capacity in transwell assays and clonogenicity in limiting dilution analyses. In comparisons of EAC gene expression patterns, we associated high expression of ERBB3 with an epithelial gene expression signature; expression of TGFβ correlated with expression of EMT-related genes, and we found an inverse correlation between expression of TGFB1 and ERBB3. EAC cells incubated with ERBB inhibitors began to secrete ligands for the TGFβ receptor and underwent EMT. Incubation of EAC cells with trastuzumab, followed by 10 days of incubation with the TGFβ receptor inhibitor in the presence of trastuzumab, caused cells to regain an epithelial phenotype. EAC patient-derived xenograft tumors grew more slowly in mice given the combination of trastuzumab, pertuzumab, and the TGFβ inhibitor than in mice given single agents or a combination of trastuzumab and pertuzumab. Tumors exposed to trastuzumab and pertuzumab expressed EMT markers and were poorly differentiated, whereas tumors exposed to the combination of trastuzumab, pertuzumab, and the TGFβ inhibitor expressed epithelial markers and were more differentiated.
Conclusions: EAC cells become resistant to trastuzumab and pertuzumab by activating TGFβ signaling, which induces EMT. Agents that block TGFβ signaling can increase the anti-tumor efficacies of trastuzumab and pertuzumab.
Keywords: Anti-Tumor Agent; Biologic; Cancer Stem Cell (CSC); Targeted Therapy.
Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Similar articles
-
EGFR, HER2 and HER3 dimerization patterns guide targeted inhibition in two histotypes of esophageal cancer.Int J Cancer. 2014 Oct 1;135(7):1517-30. doi: 10.1002/ijc.28771. Epub 2014 Apr 2. Int J Cancer. 2014. PMID: 24510732
-
An ERBB1-3 Neutralizing Antibody Mixture With High Activity Against Drug-Resistant HER2+ Breast Cancers With ERBB Ligand Overexpression.J Natl Cancer Inst. 2017 Nov 1;109(11):djx065. doi: 10.1093/jnci/djx065. J Natl Cancer Inst. 2017. PMID: 29059433 Free PMC article.
-
A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells.Breast Cancer Res Treat. 2017 Nov;166(1):55-68. doi: 10.1007/s10549-017-4382-6. Epub 2017 Jul 12. Breast Cancer Res Treat. 2017. PMID: 28702892
-
Pertuzumab: optimizing HER2 blockade.Clin Cancer Res. 2013 Oct 15;19(20):5552-6. doi: 10.1158/1078-0432.CCR-13-0518. Epub 2013 Aug 13. Clin Cancer Res. 2013. PMID: 23942091 Review.
-
Pertuzumab for the treatment of human epidermal growth factor receptor type 2-positive metastatic breast cancer.Am J Health Syst Pharm. 2013 Sep 15;70(18):1579-87. doi: 10.2146/ajhp120735. Am J Health Syst Pharm. 2013. PMID: 23988598 Review.
Cited by
-
Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma.Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2237-2242. doi: 10.1073/pnas.1820459116. Epub 2019 Jan 22. Proc Natl Acad Sci U S A. 2019. PMID: 30670657 Free PMC article.
-
Discussion on the mechanism of HER2 resistance in esophagogastric junction and gastric cancer in the era of immunotherapy.Hum Vaccin Immunother. 2025 Dec;21(1):2459458. doi: 10.1080/21645515.2025.2459458. Epub 2025 Jan 28. Hum Vaccin Immunother. 2025. PMID: 39875210 Free PMC article. Review.
-
Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets.JCI Insight. 2020 Aug 6;5(15):e138290. doi: 10.1172/jci.insight.138290. JCI Insight. 2020. PMID: 32634123 Free PMC article.
-
Soluble Compounds Released by Hypoxic Stroma Confer Invasive Properties to Pancreatic Ductal Adenocarcinoma.Biomedicines. 2020 Oct 22;8(11):444. doi: 10.3390/biomedicines8110444. Biomedicines. 2020. PMID: 33105540 Free PMC article.
-
Truncated HDAC9 identified by integrated genome-wide screen as the key modulator for paclitaxel resistance in triple-negative breast cancer.Theranostics. 2020 Sep 2;10(24):11092-11109. doi: 10.7150/thno.44997. eCollection 2020. Theranostics. 2020. PMID: 33042272 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous