Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar 7:5:8.
doi: 10.1186/s41038-017-0073-0. eCollection 2017.

The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review

Affiliations
Review

The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review

Alexandru Florin Rogobete et al. Burns Trauma. .

Abstract

The critically ill polytrauma patient presents with a series of associated pathophysiologies secondary to the traumatic injuries. The most important include systemic inflammatory response syndrome (SIRS), sepsis, oxidative stress (OS), metabolic disorders, and finally multiple organ dysfunction syndrome (MODS) and death. The poor outcome of these patients is related to the association of the aforementioned pathologies. The nutrition of the critically ill polytrauma patient is a distinct challenge because of the rapid changes in terms of energetic needs associated with hypermetabolism, sepsis, SIRS, and OS. Moreover, it has been proven that inadequate nutrition can prolong the time spent on a mechanical ventilator and the length of stay in an intensive care unit (ICU). A series of mathematical equations can predict the energy expenditure (EE), but they have disadvantages, such as the fact that they cannot predict the EE accurately in the case of patients with hypermetabolism. Indirect calorimetry (IC) is another method used for evaluating and monitoring the energy status of critically ill patients. In this update paper, we present a series of pathophysiological aspects associated with the metabolic disaster affecting the critically ill polytrauma patient. Furthermore, we present different non-invasive monitoring methods that could help the intensive care physician in the adequate management of this type of patient.

Keywords: Critically ill; Energy expenditure; Indirect calorimetry; Metabolic disaster; Overfeeding; Oxidative stress; Polytrauma; Underfeeding.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Pathophysiologies associated with trauma and their influence on metabolic disaster. Pathophysiological links between trauma, proinflammatory status, pro-oxidative status (oxidative stress), and clinical outcomes. EPI epinephrine, NE norepinephrine, SIRS systemic inflammatory response syndrome

References

    1. Strnad M, Lesjak VB, Vujanović V, Pelcl T, Križmarić M. Predictors of mortality and prehospital monitoring limitations in blunt trauma patients. Biomed Res Int. 2015;2015:983409. doi: 10.1155/2015/983409. - DOI - PMC - PubMed
    1. Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimirovic B. Predicting multiple organ failure in patients with severe trauma. Can J Surg. 2008;51:97–102. - PMC - PubMed
    1. Kotzampassi K, Kolios G, Manousou P, Kazamias P, Paramythiotis D, Papavramidis TS, et al. Oxidative stress due to anesthesia and surgical trauma: importance of early enteral nutrition. Mol Nutr Food Res. 2009;53:770–9. doi: 10.1002/mnfr.200800166. - DOI - PubMed
    1. Burkhardt M, Nienaber U, Pizanis A, Maegele M, Culemann U, Bouillon B, et al. Acute management and outcome of multiple trauma patients with pelvic disruptions. Crit Care. 2012;16:R163. doi: 10.1186/cc11487. - DOI - PMC - PubMed
    1. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36:691–709. doi: 10.1016/j.injury.2004.12.037. - DOI - PubMed