Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;5(1):12-18.
doi: 10.1089/big.2016.0014. Epub 2017 Mar 13.

Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education

Affiliations

Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education

Jay Aikat et al. Big Data. 2017 Mar.

Abstract

The era of "big data" has radically altered the way scientific research is conducted and new knowledge is discovered. Indeed, the scientific method is rapidly being complemented and even replaced in some fields by data-driven approaches to knowledge discovery. This paradigm shift is sometimes referred to as the "fourth paradigm" of data-intensive and data-enabled scientific discovery. Interdisciplinary research with a hard emphasis on translational outcomes is becoming the norm in all large-scale scientific endeavors. Yet, graduate education remains largely focused on individual achievement within a single scientific domain, with little training in team-based, interdisciplinary data-oriented approaches designed to translate scientific data into new solutions to today's critical challenges. In this article, we propose a new pedagogy for graduate education: data-centered learning for the domain-data scientist. Our approach is based on four tenets: (1) Graduate training must incorporate interdisciplinary training that couples the domain sciences with data science. (2) Graduate training must prepare students for work in data-enabled research teams. (3) Graduate training must include education in teaming and leadership skills for the data scientist. (4) Graduate training must provide experiential training through academic/industry practicums and internships. We emphasize that this approach is distinct from today's graduate training, which offers training in either data science or a domain science (e.g., biology, sociology, political science, economics, and medicine), but does not integrate the two within a single curriculum designed to prepare the next generation of domain-data scientists. We are in the process of implementing the proposed pedagogy through the development of a new graduate curriculum based on the above four tenets, and we describe herein our strategy, progress, and lessons learned. While our pedagogy was developed in the context of graduate education, the general approach of data-centered learning can and should be applied to students and professionals at any stage of their education, including at the K-12, undergraduate, graduate, and professional levels. We believe that the time is right to embed data-centered learning within our educational system and, thus, generate the talent required to fully harness the potential of big data.

Keywords: big data analytics; big data infrastructure design; big data training; business intelligence; data science; graduate education; scientific discovery; team science.

PubMed Disclaimer

Publication types

LinkOut - more resources