Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul;1864(7):1165-1182.
doi: 10.1016/j.bbamcr.2017.03.004. Epub 2017 Mar 10.

Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle

Affiliations
Free article

Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle

Juliana Pérez-Miguelsanz et al. Biochim Biophys Acta Mol Cell Res. 2017 Jul.
Free article

Abstract

The paradigm of a cytoplasmic methionine cycle synthesizing/eliminating metabolites that are transported into/out of the nucleus as required has been challenged by detection of significant nuclear levels of several enzymes of this pathway. Here, we show betaine homocysteine S-methyltransferase (BHMT), an enzyme that exerts a dual function in maintenance of methionine levels and osmoregulation, as a new component of the nuclear branch of the cycle. In most tissues, low expression of Bhmt coincides with a preferential nuclear localization of the protein. Conversely, the liver, with very high Bhmt expression levels, presents a main cytoplasmic localization. Nuclear BHMT is an active homotetramer in normal liver, although the total enzyme activity in this fraction is markedly lower than in the cytosol. N-terminal basic residues play a role in cytoplasmic retention and the ratio of glutathione species regulates nucleocytoplasmic distribution. The oxidative stress associated with d-galactosamine (Gal) or buthionine sulfoximine (BSO) treatments induces BHMT nuclear translocation, an effect that is prevented by administration of N-acetylcysteine (NAC) and glutathione ethyl ester (EGSH), respectively. Unexpectedly, the hepatic nuclear accumulation induced by Gal associates with reduced nuclear BHMT activity and a trend towards increased protein homocysteinylation. Overall, our results support the involvement of BHMT in nuclear homocysteine remethylation, although moonlighting roles unrelated to its enzymatic activity in this compartment cannot be excluded.

Keywords: Betaine homocysteine methyltransferase; Cytosolic retention; Galactosamine intoxication; One-carbon metabolism; Oxidative stress; Subcellular localization.

PubMed Disclaimer

Publication types