Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2017 Aug;71(8):973-979.
doi: 10.1038/ejcn.2017.9. Epub 2017 Mar 15.

Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study

Affiliations
Randomized Controlled Trial

Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study

L Hodson et al. Eur J Clin Nutr. 2017 Aug.

Erratum in

Abstract

Background/objective: Treatment of subjects with non-alcoholic fatty liver disease (NAFLD) with omega-3 polyunsaturated fatty acids (FAs) suggests high levels of docosahexaenoic acid (DHA) tissue enrichment decrease liver fat content. We assessed whether changes in erythrocyte DHA enrichment (as a surrogate marker of changes in tissue enrichment) were associated with alterations in hepatic de novo lipogenesis (DNL), postprandial FA partitioning and hepatic and peripheral insulin sensitivity in a sub-study of the WELCOME trial (Wessex Evaluation of fatty Liver and Cardiovascular markers in NAFLD (non-alcoholic fatty liver disease) with OMacor thErapy).

Subjects/methods: Sixteen participants were randomised to 4 g/day EPA+DHA (n=8) or placebo (n=8) for 15-18 months and underwent pre- and post-intervention measurements. Fasting and postprandial hepatic FA metabolism was assessed using metabolic substrates labelled with stable-isotope tracers (2H2O and [U13C]palmitate). Insulin sensitivity was measured by a stepped hyperinsulinaemic-euglycaemic clamp using deuterated glucose. Participants were stratified according to change in DHA erythrocyte enrichment (< or ⩾2% post intervention).

Results: Nine participants were stratified to DHA⩾2% (eight randomised to EPA+DHA and one to placebo) and seven to the DHA<2% group (all placebo). Compared with individuals with erythrocyte <2% change in DHA abundance, those with ⩾2% enrichment had significant improvements in hepatic insulin sensitivity, reduced fasting and postprandial plasma triglyceride concentrations, decreased fasting hepatic DNL, as well as greater appearance of 13C from dietary fat into plasma 3-hydroxybutyrate (all P<0.05).

Conclusions: The findings from our pilot study indicate that individuals who achieved a change in erythrocyte DHA enrichment ⩾2% show favourable changes in hepatic FA metabolism and insulin sensitivity, which may contribute to decreasing hepatic fat content.

Trial registration: ClinicalTrials.gov NCT00760513.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Consort diagram showing recruitment for the WELCOME sub-study and the numbers of subjects available for hepatic fatty acid metabolism and insulin sensitivity studies. See text for the reasons for withdrawal from the study.
Figure 2
Figure 2
Correlations between change in erythrocyte DHA (%) and change in fasting plasma VLDL-triacylglycerol (TG) concentrations (μmol/l) (a); change in erythrocyte DHA (%) and change in the fasting contribution (μmol/l) of DNL fatty acids to VLDL-TG (b); and change in erythrocyte DHA (%) and change in postprandial plasma [13C]3OHB concentrations (μmol/L) (c).

References

    1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592–1609. - PubMed
    1. Kotronen A, Yki-Jarvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28: 27–38. - PubMed
    1. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369–1375. - PMC - PubMed
    1. Byrne CD. Dorothy Hodgkin Lecture 2012: non-alcoholic fatty liver disease, insulin resistance and ectopic fat: a new problem in diabetes management. Diabet Med 2012; 29: 1098–1107. - PubMed
    1. McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy 2007; 27: 715–728. - PubMed

Publication types

MeSH terms

Associated data