FFLUX: Transferability of polarizable machine-learned electrostatics in peptide chains
- PMID: 28295430
- DOI: 10.1002/jcc.24775
FFLUX: Transferability of polarizable machine-learned electrostatics in peptide chains
Abstract
The fully polarizable, multipolar, and atomistic force field protein FFLUX is being built from machine learning (i.e., kriging) models, each of which predicts an atomic property. Each atom of a given protein geometry needs to be assigned such a kriging model. Such a knowledgeable atom needs to be informed about a sufficiently large environment around it. The resulting complexity can be tackled by collecting the 20 natural amino acids into a few groups. Using substituted deca-alanines, we present the proof-of-concept that a given atom's charge can be modeled by a few kriging models only. © 2017 Wiley Periodicals, Inc.
Keywords: QTAIM; atomic charge; force field; machine learning; peptides; quantum chemical topology; transferability.
© 2017 Wiley Periodicals, Inc.
Similar articles
-
Toward amino acid typing for proteins in FFLUX.J Comput Chem. 2017 Mar 5;38(6):336-345. doi: 10.1002/jcc.24686. Epub 2016 Dec 19. J Comput Chem. 2017. PMID: 27991680 Free PMC article.
-
Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.J Chem Theory Comput. 2016 Jun 14;12(6):2742-51. doi: 10.1021/acs.jctc.6b00457. Epub 2016 Jun 3. J Chem Theory Comput. 2016. PMID: 27224739
-
A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics.J Comput Chem. 2020 Mar 15;41(7):619-628. doi: 10.1002/jcc.26111. Epub 2019 Nov 20. J Comput Chem. 2020. PMID: 31747059 Free PMC article.
-
Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design.Annu Rev Phys Chem. 2002;53:349-78. doi: 10.1146/annurev.physchem.53.082201.124235. Epub 2001 Oct 4. Annu Rev Phys Chem. 2002. PMID: 11972012 Review.
-
Chemical double-mutant cycles: dissecting non-covalent interactions.Chem Soc Rev. 2007 Feb;36(2):172-88. doi: 10.1039/b603842p. Epub 2006 Nov 27. Chem Soc Rev. 2007. PMID: 17264921 Review.
Cited by
-
Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations.J Phys Chem A. 2023 Feb 23;127(7):1702-1714. doi: 10.1021/acs.jpca.2c06566. Epub 2023 Feb 9. J Phys Chem A. 2023. PMID: 36756842 Free PMC article.
-
Atomic partial charge predictions for furanoses by random forest regression with atom type symmetry function.RSC Adv. 2020 Jan 2;10(2):666-673. doi: 10.1039/c9ra09337k. eCollection 2020 Jan 2. RSC Adv. 2020. PMID: 35494472 Free PMC article.
-
Toward Gaussian Process Regression Modeling of a Urea Force Field.J Phys Chem A. 2024 Oct 3;128(39):8551-8560. doi: 10.1021/acs.jpca.4c04117. Epub 2024 Sep 20. J Phys Chem A. 2024. PMID: 39303098 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources