Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun;104(5):869-881.
doi: 10.1111/mmi.13668. Epub 2017 Apr 18.

SurR is a master regulator of the primary electron flow pathways in the order Thermococcales

Affiliations
Free article

SurR is a master regulator of the primary electron flow pathways in the order Thermococcales

Gina L Lipscomb et al. Mol Microbiol. 2017 Jun.
Free article

Abstract

The sulfur response regulator, SurR, is among a handful of known redox-active transcriptional regulators. First characterized from the hyperthermophile Pyrococcus furiosus, it is unique to the archaeal order Thermococcales. P. furiosus has two modes of electron disposal. Hydrogen gas is produced when the organism is grown in the absence of elemental sulfur (S0 ) and H2 S is produced when grown in its presence. Switching between these metabolic modes requires a rapid transcriptional response and this is orchestrated by SurR. We show here that deletion of SurR causes severely impaired growth in the absence of S0 since genes essential for H2 metabolism are no longer activated. Conversely, a strain containing a constitutively active SurR variant displays a growth phenotype in the presence of S0 due to constitutive repression of S0 -responsive genes. During a metabolic shift initiated by addition of S0 to the growth medium, both strains demonstrate a de-regulation of genes involved in the SurR regulon, including hydrogenase and related S0 -responsive genes. These results demonstrate that SurR is a master regulator of electron flow within P. furiosus, likely affecting the pools of ferredoxin, NADPH and NADH, as well as influencing metabolic pathways and thiol/disulfide redox balance.

PubMed Disclaimer

LinkOut - more resources