Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects
- PMID: 28295960
- PMCID: PMC5560109
- DOI: 10.1002/anie.201612647
Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects
Abstract
The success of nanomedicines in the clinic depends on our comprehensive understanding of nano-bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe ) values. Herein, we investigated the accumulation of ultrasmall renal-clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC-3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines.
Keywords: microvascular density; nanoparticles; renal clearance; tumor acidity; tumor targeting.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic.Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4112-4128. doi: 10.1002/anie.201807847. Epub 2019 Jan 14. Angew Chem Int Ed Engl. 2019. PMID: 30182529 Free PMC article. Review.
-
Tuning the In Vivo Transport of Anticancer Drugs Using Renal-Clearable Gold Nanoparticles.Angew Chem Int Ed Engl. 2019 Jun 17;58(25):8479-8483. doi: 10.1002/anie.201903256. Epub 2019 May 14. Angew Chem Int Ed Engl. 2019. PMID: 31006932 Free PMC article.
-
Imaging Nano-Bio Interactions in the Kidney: Toward a Better Understanding of Nanoparticle Clearance.Angew Chem Int Ed Engl. 2018 Mar 12;57(12):3008-3010. doi: 10.1002/anie.201711705. Epub 2018 Feb 16. Angew Chem Int Ed Engl. 2018. PMID: 29450950
-
Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.ACS Nano. 2013 Jul 23;7(7):6244-57. doi: 10.1021/nn402201w. Epub 2013 Jun 27. ACS Nano. 2013. PMID: 23799860
-
Bioapplications of renal-clearable luminescent metal nanoparticles.Biomater Sci. 2017 Jul 25;5(8):1393-1406. doi: 10.1039/c7bm00257b. Biomater Sci. 2017. PMID: 28484751 Review.
Cited by
-
Ultrasmall Noble Metal Nanoparticles: Breakthroughs and Biomedical Implications.Nano Today. 2018 Aug;21:106-125. doi: 10.1016/j.nantod.2018.06.006. Epub 2018 Jul 19. Nano Today. 2018. PMID: 31327979 Free PMC article.
-
Application of nanoparticles in the diagnosis and treatment of chronic kidney disease.Front Med (Lausanne). 2023 Apr 17;10:1132355. doi: 10.3389/fmed.2023.1132355. eCollection 2023. Front Med (Lausanne). 2023. PMID: 37138743 Free PMC article. Review.
-
In Vivo Neuroelectrophysiological Monitoring of Atomically Precise Au25 Clusters at an Ultrahigh Injected Dose.ACS Omega. 2020 Sep 16;5(38):24537-24545. doi: 10.1021/acsomega.0c03005. eCollection 2020 Sep 29. ACS Omega. 2020. PMID: 33015471 Free PMC article.
-
Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic.Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4112-4128. doi: 10.1002/anie.201807847. Epub 2019 Jan 14. Angew Chem Int Ed Engl. 2019. PMID: 30182529 Free PMC article. Review.
-
Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing.Molecules. 2019 Aug 22;24(17):3045. doi: 10.3390/molecules24173045. Molecules. 2019. PMID: 31443398 Free PMC article. Review.
References
-
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Nat Rev Mater. 2016;1:16014.
-
- Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Cancer Cell Int. 2013;13:89. - PMC - PubMed
- Danhier F, Feron O, Preat V. J Controlled Release. 2010;148:135–146. - PubMed
- Fukumura D, Jain RK. Microvasc Res. 2007;74:72–84. - PMC - PubMed
- Brown JM, Giaccia AJ. Cancer Res. 1998;58:1408–1416. - PubMed
-
- Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, Reshetnyak YK, Andreev OA. Proc Natl Acad Sci USA. 2013;110:465–470. - PMC - PubMed
- Du JZ, Sun TM, Song WJ, Wu J, Wang J. Angew Chem Int Ed. 2010;49:3621–3626. - PubMed
- Angew Chem. 2010;122:3703–3708.
- Zhou KJ, Wang YG, Huang XN, Luby-Phelps K, Sumer BD, Gao JM. Angew Chem Int Ed. 2011;50:6109–6114. - PMC - PubMed
- Angew Chem. 2011;123:6233–6238.
- Crayton SH, Tsourkas A. ACS Nano. 2011;5:9592–9601. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical