Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;95(2-1):022214.
doi: 10.1103/PhysRevE.95.022214. Epub 2017 Feb 21.

Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards

Affiliations

Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards

Y H Hsieh et al. Phys Rev E. 2017 Feb.

Abstract

The trajectory equations for classical periodic orbits in the equilateral-triangular and circular billiards are systematically extracted from quantum stationary coherent states. The relationship between the phase factors of quantum stationary coherent states and the initial positions of classical periodic orbits is analytically derived. In addition, the stationary coherent states with noncoprime parametric numbers are shown to correspond to the multiple periodic orbits, which cannot be explicable in the one-particle picture. The stationary coherent states are further verified to be linked to the resonant modes that are generally observed in the experimental wave system excited by a localized and unidirectional source. The excellent agreement between the resonant modes and the stationary coherent states not only manifests the importance of classical features in experimental systems but also paves the way to manipulate the mesoscopic wave functions localized on the periodic orbits for applications.

PubMed Disclaimer

Similar articles

LinkOut - more resources