Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec 15;248(3):791-9.
doi: 10.1042/bj2480791.

Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements

Affiliations

Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements

S J Taylor et al. Biochem J. .

Abstract

The effect of the GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]) on the polyphosphoinositide phospholipase C (PLC) of rat liver was examined by using exogenous [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. GTP[S] stimulated the membrane-bound PLC up to 20-fold, with a half-maximal effect at approx. 100 nM. Stimulation was also observed with guanosine 5'-[beta gamma-imido]triphosphate, but not with adenosine 5'-[gamma-thio]triphosphate, and was inhibited by guanosine 5'-[beta-thio]diphosphate. Membrane-bound PLC was entirely Ca2+-dependent, and GTP[S] produced both a decrease in the Ca2+ requirement and an increase in activity at saturating [Ca2+]. The stimulatory action of GTP[S] required millimolar Mg2+. [8-arginine]Vasopressin (100 nM) stimulated the PLC activity approx. 2-fold in the presence of 10 nM-GTP[S], but had no effect in the absence of GTP[S] or at 1 microM-GTP[S]. The hydrolysis of PtdIns(4,5)P2 by membrane-bound PLC was increased when the substrate was mixed with phosphatidylethanolamine, phosphatidylcholine or various combinations of these with phosphatidylserine. With PtdIns(4,5)P2, alone or mixed with phosphatidylcholine, GTP[S] evoked little or no stimulation of the PLC activity. However, maximal stimulation by GTP[S] was observed in the presence of a 2-fold molar excess of phosphatidylserine or various combinations of phosphatidylethanolamine and phosphatidylserine. Hydrolysis of [3H]phosphatidylinositol 4-phosphate by membrane-bound PLC was also increased by GTP[S]. However, [3H]phosphatidylinositol was a poor substrate, and its hydrolysis was barely affected by GTP[S]. Cytosolic PtdIns(4,5)P2-PLC exhibited a Ca2+-dependence similar to that of the membrane-bound activity, but was unaffected by GTP[S]. It is concluded that rat liver plasma membranes possess a Ca2+-dependent polyphosphoinositide PLC that is activated by hormones and GTP analogues, depending on the Mg2+ concentration and phospholipid environment. It is proposed that GTP analogues and hormones, acting through a guanine nucleotide-binding protein, activate the enzyme mainly by lowering its Ca2+ requirement.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1984 Jan;73(1):1-4 - PubMed
    1. J Biol Chem. 1986 Feb 25;261(6):2712-7 - PubMed
    1. Biochem J. 1984 Feb 15;218(1):177-85 - PubMed
    1. J Biol Chem. 1984 Oct 10;259(19):11718-24 - PubMed
    1. J Biol Chem. 1986 Feb 25;261(6):2918-27 - PubMed

Publication types

MeSH terms