Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 16;12(3):e0173443.
doi: 10.1371/journal.pone.0173443. eCollection 2017.

Species-free species distribution models describe macroecological properties of protected area networks

Affiliations

Species-free species distribution models describe macroecological properties of protected area networks

Jason L Robinson et al. PLoS One. .

Abstract

Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Ecoregions of the US (Bailey 1995) and selected U.S. National Park Service units in the lower 48 states.
Numbers correspond to ecoregion codes in S1 Table. Park boundaries slightly exaggerated for illustration.
Fig 2
Fig 2. Park climate envelope richness (current conditions).
National park boundaries are represented by thin black lines.
Fig 3
Fig 3. Park climate envelope richness (future conditions).
National park boundaries are represented by thin black lines.
Fig 4
Fig 4
a. Predicted climate envelope area as a function of park area (current conditions, log scale), distinguishing protected area climates which go fully extinct from study area in the future scenario. b. Parks occurring in only one ecoregion predict smaller climate envelopes than parks in multiple ecoregions (t = -5.15, df = 77.71, p = <0.005).
Fig 5
Fig 5. Individual protected area unit occupancy by protected area climate envelopes tends to increase in the future scenario.
1:1 line shown.

Similar articles

References

    1. Rodriguez JP, Brotons L, Bustamante J, Seoane J. 2007. The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions 13(3): 243–251.
    1. Peterson AT, Sorberon J, Pearson RG, Anderson RP, Martinez-Meyer E, Nakamura M, et al. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, New Jersey.
    1. Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecology and Biogeography 12: 361–371.
    1. Scott D, McBoyle G, Schartzentruber M. 2004. Climate change and the distribution of climatic resources for tourism in North America. Climate Research 27: 105–117.
    1. Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RHW, Cedhagen T, et al. 2007. Forecasting the effects of global warming on biodiversity. Bioscience 57(3): 227–236.