Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;113(3):341-349.
doi: 10.1007/s004420050385.

Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands

Affiliations

Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands

Hans Peter Rusterholz et al. Oecologia. 1998 Jan.

Abstract

Effects of elevated CO2 on flowering phenology and nectar production were investigated in Trifolium pratense, Lotus corniculatus, Scabiosa columbaria, Centaurea jacea and Betonica officinalis, which are all important nectar plants for butterflies. In glasshouse experiments, juvenile plants were exposed to ambient (350 μl l-1) and elevated (660 μl l-1) CO2 concentrations for 60-80 days. Elevated CO2 significantly enhanced the development of flower buds in C. jacea. B. officinalis flowered earlier and L. corniculatus produced more flowers under elevated CO2. In contrast, the number of flowers decreased in T. pratense. The amount of nectar per flower was not affected by elevated CO2 in the tested legumes (T. pratense and L. corniculatus), but was significantly reduced (!) in the other forbs. Elevated CO2 did not significantly affect nectar sugar concentration and composition. However, S. columbaria and C. jacea produced significantly less total sugar under elevated CO2. The nectar amino acid concentration remained unaffected in all investigated plant species, whereas the total of amino acids produced per flower was reduced in all non-legumes. In addition, the amino acid composition changed significantly in all investigated species except for C. jacea. The observed effects are unexpected and are a potential threat to flower visitors such as most butterflies which have no alternative food resources to nectar. Changes in nectar production due to elevated CO2 could also have generally detrimental effects on the interactions of flowers and their pollinators.

Keywords: Amino acids; Key words Elevated CO2; Nectar; Phenology; Sugar.

PubMed Disclaimer