Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Mar;21(1):57-71.
doi: 10.1007/BF00345893.

Salt regulation in halophytes

Affiliations

Salt regulation in halophytes

Roland Albert. Oecologia. 1975 Mar.

Abstract

Ion concentration and saturation water content were measured in various aged leaves of halophytes growing in saline soils east of lake Neusiedlersee (Austria).All species investigated showed a substantial sodium accumulation within the maturing organs accompanied by a considerable potassium decline. In most species chloride concentration rises distinctly with increasing leaf age, too, whereas concentration shifts of alkaline earth ions and of sulfate (except in Plantago maritima, Lepidium crassifolium and Crypsis aculeata) are of comparably less importance.Saturation water increases markedly in succulent species (Suaeda maritima, Chenopodium glaucum, Spergularia media, Lepidium crassifolium) and to a less degree in xerophytic monocotyledons (Puccinellia distans, Crypsis aculeata, Bolboschoenus maritimus). However, this surplus of water in older leaves is not sufficient to dilute the salt to such an extent that a rise in concentration can be prevented (except chloride in Suaeda maritima and Chenopodium glaucum).Rosette plants (Triglochin maritimum, Plantago maritima, Scorzonera parviflora, Aster tripolium) with the ability to renew their leaves continuously throughout the growth period are characterized by only insignificant changes of saturation water content with increasing leaf age. In these plants, shedding of old salt-saturated leaves is thought to be the main strategy for salt regulation.A modification of Steiner's classical concept of different "salt regulation types" is proposed, based on original findings about salt regulation in Austrian halophytes and on new bibliographical data upon additionally revealed regulatory principles in halophytes and saltaffected nonhalophytes.

PubMed Disclaimer

References

    1. Planta. 1966 Jun;70(2):193-206 - PubMed
    1. Biochim Biophys Acta. 1970 Oct 14;220(1):132-3 - PubMed
    1. Plant Physiol. 1965 Jul;40(4):625-32 - PubMed
    1. Plant Physiol. 1972 Feb;49(2):260-3 - PubMed
    1. Science. 1969 Oct 17;166(3903):395-6 - PubMed