Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice
- PMID: 28315782
- PMCID: PMC5481205
- DOI: 10.1016/j.nbd.2017.03.006
Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice
Abstract
Catechol-O-methyltransferase (COMT) degrades dopamine and its precursor l-DOPA and plays a critical role in regulating synaptic dopamine actions. We investigated the effects of heightened levels of COMT on dopamine-regulated motor behaviors and molecular alterations in a mouse model of dyskinesia. Transgenic mice overexpressing human COMT (TG) and their wildtype (WT) littermates received unilateral 6-OHDA lesions in the dorsal striatum and were treated chronically with l-DOPA for two weeks. l-DOPA-induced dyskinesia was exacerbated in TG mice without altering l-DOPA motor efficacy as determined by contralateral rotations or motor coordination. Inductions of FosB and phospho-acetylated histone 3 (molecular correlates of dyskinesia) were potentiated in the lesioned striatum of TG mice compared with their WT littermates. The TG mice had lower basal levels of dopamine in the striatum. In mice with lesions, l-DOPA induces a greater increase in the dopamine metabolite 3-methoxytyramine in the lesioned striatum of dyskinetic TG mice than in WT mice. The levels of serotonin and its metabolite were similar in TG and WT mice. Our results demonstrate that human COMT overexpression confers a heightened susceptibility to l-DOPA-induced dyskinesia and alters molecular and neurochemical responses in the lesioned striatum of mice.
Keywords: 22q11.2; ARVCF; Abnormal involuntary movements; COMT; Dopamine; LID; Striatum; TXNRD2; l-DOPA.
Copyright © 2017 Elsevier Inc. All rights reserved.
Conflict of interest statement
Figures





References
-
- Bastide MF, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol. 2015;132:96–168. - PubMed
-
- Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Tan EK, Drozdzik M. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson's disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18:815–821. - PubMed
-
- Carta M, Carlsson T, Kirik D, Björklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130:1819–1833. - PubMed
-
- Cenci MA, Lundblad M. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice. Curr Protoc Neurosci 25. 2007;Chapter 9 Unit 9. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous