Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar 3:4:21.
doi: 10.3389/fmed.2017.00021. eCollection 2017.

Exercise-Associated Hyponatremia: 2017 Update

Affiliations
Review

Exercise-Associated Hyponatremia: 2017 Update

Tamara Hew-Butler et al. Front Med (Lausanne). .

Abstract

Exercise-associated hyponatremia (EAH) was initially described in the 1980s in endurance athletes, and work done since then has conclusively identified that overdrinking beyond thirst and non-osmotic arginine vasopressin release are the most common etiologic factors. In recent years, EAH has been described in a broader variety of athletic events and also has been linked to the development of rhabdomyolysis. The potential role of volume and sodium depletion in a subset of athletes has also been described. This review focuses on the most recent literature in the field of EAH and summarizes key new findings in the epidemiology, pathophysiology, treatment, and prevention of this condition.

Keywords: exercise; hyponatremia; pathogenesis; rhabdomyolysis; water.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Reported cases of exercise-associated hyponatremia (EAH) along the spectrum of pathophysiology. Cases of EAH per sport are superimposed upon the broad spectrum of volemic pathophysiology: (1) hypervolemia—overzealous drinking with arginine vasopressin (AVP) stimulated fluid retention and minimal sodium losses or sodium over-correction (black triangle); (2) euvolemia—moderate drinking with AVP stimulated fluid retention and mild (compensable) sodium losses (gold triangle); and (3) hypovolemia—moderate drinking (volemic thirst) with AVP stimulated fluid retention, and under-replaced sodium losses (red triangle).
Figure 2
Figure 2
Pathogenic factors involved in the development of exercise-associated hyponatremia (EAH). EAH develops from multiple mechanisms and can occur in both states of volume excess and depletion with AVP secretion occurring in both cases. It is important to note that none of these mechanisms occur in isolation, and they can overlap in any given patients (for example, sodium loss and excess water intake can occur in the same patient) Abbreviations: Na, sodium; AVP, arginine vasopressin; GI, gastrointestinal; CNS, central nervous system; RAAS, renin–angiotensin–aldosterone system.
Figure 3
Figure 3
Putative bidirectional relationship between exercise-associated hyponatremia (EAH) and rhabdomyolysis. EAH may lead to rhabdomyolysis through changes in the skeletal muscle membrane (osmotic shock) and activation of reactive oxygen species (ROS) along with increases in intracellular calcium (Ca) that activate intracellular proteases and lead to cellular breakdown. Rhabdomyolysis either through this mechanism or by other means leads to local and systemic inflammation and release of interleukin-6 (IL-6), which may increase arginine vasopressin (AVP) levels further lowering serum sodium. Non-steroidal anti-inflammatory drug use may also contribute to excess AVP release.
Figure 4
Figure 4
Treatment of exercise-associated hyponatremia (EAH) according to signs and symptoms. Evidenced-base treatment options for EAH associated with mild (yellow), moderate (orange), or severe clinical signs and symptoms.

References

    1. Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RK. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc (1985) 17(3):370–5.10.1249/00005768-198506000-00012 - DOI - PubMed
    1. Frizzell RT, Lang GH, Lowance DC, Lathan SR. Hyponatremia and ultramarathon running. JAMA (1986) 255(6):772–4.10.1001/jama.1986.03370060086025 - DOI - PubMed
    1. Hiller DB, O’Toole ML, Fortress EE, Laird RH, Imbert PC, Sisk TD. Medical and physiological considerations in triathlons. Am J Sports Med (1987) 15(2):164–8.10.1177/036354658701500212 - DOI - PubMed
    1. Jones BL, O’Hara JP, Till K, King RF. Dehydration and hyponatremia in professional rugby union players: a cohort study observing English premiership rugby union players during match play, field, and gym training in cool environmental conditions. J Strength Cond Res (2015) 29(1):107–15.10.1519/JSC.0000000000000620 - DOI - PubMed
    1. Mayer CU, Treff G, Fenske WK, Blouin K, Steinacker JM, Allolio B. High incidence of hyponatremia in rowers during a four-week training camp. Am J Med (2015) 128(10):1144–51.10.1016/j.amjmed.2015.04.014 - DOI - PubMed

LinkOut - more resources