Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 13;121(14):3024-3031.
doi: 10.1021/acs.jpcb.7b01508. Epub 2017 Mar 30.

Qualitative Behavior of the Low-Frequency Vibrational Dynamics of Microtubules and the Surrounding Water

Affiliations

Qualitative Behavior of the Low-Frequency Vibrational Dynamics of Microtubules and the Surrounding Water

Jeremy M Moix et al. J Phys Chem B. .

Erratum in

Abstract

The dynamics of the low-frequency vibrational modes of microtubules play a key role in many theoretical models regarding their biological function. We analyze these dynamics through large scale, classical molecular dynamics simulations of a microtubule composed of 42 tubulin heterodimers to provide insights into the qualitative nature of the vibrational energy absorption and dissipation mechanisms. The computed microtubule absorption spectra and vibrational density of states in the terahertz regime are presented, along with an analysis of the vibrational dephasing rates of the tubulin monomer center of mass dynamics, which are shown to be overdamped. Additionally, the presence of the microtubule modifies the dynamical properties of the solvation shell structure within roughly 10 Å of the protein. These vibrational properties are similar to those seen in other globular proteins and indicate microtubules are unlikely candidates for any large scale collective vibrational processes in the terahertz regime such as Fröhlich condensates.

PubMed Disclaimer

Publication types

LinkOut - more resources