Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun;30(3):399-408.
doi: 10.1097/ACO.0000000000000465.

Prevention of respiratory complications of the surgical patient: actionable plan for continued process improvement

Affiliations
Review

Prevention of respiratory complications of the surgical patient: actionable plan for continued process improvement

Katarina J Ruscic et al. Curr Opin Anaesthesiol. 2017 Jun.

Abstract

Purpose of review: Postoperative respiratory complications (PRCs) increase hospitalization time, 30-day mortality and costs by up to $35 000. These outcomes measures have gained prominence as bundled payments have become more common.

Recent findings: Results of recent quantitative effectiveness studies and clinical trials provide a framework that helps develop center-specific treatment guidelines, tailored to minimize the risk of PRCs. The implementation of those protocols should be guided by a local, respected, and visible facilitator who leads proper implementation while inviting center-specific input from surgeons, anesthesiologists, and other perioperative stakeholders.

Summary: Preoperatively, patients should be risk-stratified for PRCs to individualize intraoperative choices and postoperative pathways. Laparoscopic compared with open surgery improves respiratory outcomes. High-risk patients should be treated by experienced providers based on locally developed bundle-interventions to optimize intraoperative treatment and ICU bed utilization. Intraoperatively, lung-protective ventilation (procedure-specific positive end-expiratory pressure utilization, and low driving pressure) and moderately restrictive fluid therapy should be used. To achieve surgical relaxation, high-dose neuromuscular blocking agents (and reversal agents) as well as high-dose opioids should be avoided; inhaled anesthetics improve surgical conditions while protecting the lungs. Patients should be extubated in reverse Trendelenburg position. Postoperatively, continuous positive airway pressure helps prevent airway collapse and protocolized, early mobilization improves cognitive and respiratory function.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Upper airway and pulmonary disorders. Upper airway disorders are given in the pink box. Dilating forces (green box) include increased lung expansion and increased upper airway dilator muscle tone (genioglossus muscle shown). Collapsing forces (yellow box) include increased negative pharyngeal pressure generated by respiratory pump muscles (diaphragm shown), and increased soft tissue causing external mechanical load on the upper airway (yellow mass with arrows next to upper airway). Pulmonary disorders are given in the blue box. Pulmonary edema (orange box) with interstitial fluid (alveolus with surrounding fluid), alveolar fluid (blue alveolus), or both, can be caused by increased negative pulmonary pressure (blue arrows), fluid overload (blue base of lung), or multiple causes of interstitial edema. Ventilator-induced lung injury (purple box) can be due to barotrauma, atelectotrauma (deflated alveolus), biotrauma (multicolored dots), or volutrauma (distended alveolus). GG, genioglossus muscle; UA, upper airway; VILI, ventilator-induced lung injury.
FIGURE 2
FIGURE 2
How to implement the SPORC. Point values (pts, shown as blue bars) are shown for the prediction factors: American Society of Anesthesiologists (ASA) score greater than or equal to three (three points), emergency procedure (three points), referring high-risk service (two points), history of congestive heart failure (two points), and chronic pulmonary disease (one point). The points for each risk factor are summed to reach a final SPORC score. The corresponding probability for reintubation is given on the red scale below the row of SPORC values. Reproduced with permission from [15]. SPORC, score for prediction of postoperative respiratory complications.
Box 1
Box 1
no caption available
FIGURE 3
FIGURE 3
Review of literature and guidelines for creation of a locally implemented algorithm. Clinicians must think globally (blue circle with arrows) about the myriad preoperative (dark pink circle), intraoperative (light pink circle), and postoperative (light purple circle) factors that can potentially decrease postoperative respiratory complications. Review of this complex, global view by a local, respected, multidisciplinary team (red ‘local review’ arrow) can lead to the creation of a more easily and systematically implemented local algorithm that creates actionable hospital bundles (red circle). This local algorithm needs ongoing evaluation of efficacy, which should trigger optimization of the local algorithm (red arrows surrounding algorithm circle).

References

    1. Mazo V, Sabaté S, Canet J, et al. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology 2014; 121:219–231. - PubMed
    1. Johnson RG, Arozullah AM, Neumayer L, et al. Multivariable predictors of postoperative respiratory failure after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg 2007; 204:1188–1198. - PubMed
    1. Kim ES, Kim YT, Kang CH, et al. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:1317–1326. - PMC - PubMed
    1. Ellimoottil C, Ryan AM, Hou H, et al. Medicare's new bundled payment for joint replacement may penalize hospitals that treat medically complex patients. Health Aff 2016; 35:1651–1657. - PMC - PubMed
    1. Sonny A, Grabitz SD, Timm FP, et al. Impact of postoperative respiratory complications on discharge disposition, mortality, and re-admissions. ASA Abstr 2016. A5016.
    2. Abstract evaluating the independent impact of postoperative reintubation, pneumonia, pulmonary edema, respiratory failure, postoperative desaturation, and atelectasis on patient-centered adverse outcomes.

MeSH terms

Substances