Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue
- PMID: 28325852
- PMCID: PMC5417827
- DOI: 10.1074/mcp.M116.065524
Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue
Abstract
The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Conflict of interest statement
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health
Figures
References
-
- Rosen E. D., and MacDougald O. A. (2006) Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 - PubMed
-
- Kim H.-S., Ryoo Z. Y., Choi S. U., and Lee S. (2015) Gene expression profiles reveal effect of a high-fat diet on the development of white and brown adipose tissues. Gene 565, 15–21 - PubMed
-
- Meierhofer D., Weidner C., and Sauer S. (2014) Integrative analysis of transcriptomics, proteomics, and metabolomics data of white adipose and liver tissue of high-fat diet and rosiglitazone-treated insulin-resistant mice identified pathway alterations and molecular hubs. J. Proteome Res. 13, 5592–5602 - PubMed
-
- Forner F., Kumar C., Luber C. A., Fromme T., Klingenspor M., and Mann M. (2009) Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metabolism 10, 324–335 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
