An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone
- PMID: 28328085
- DOI: 10.1002/cssc.201601769
An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone
Abstract
To achieve a higher activity and reusability of a Ru-based catalyst, Ru nanoparticles were embedded in N-doped mesoporous carbon through a hard-template method. The catalyst showed excellent catalytic performance (314 h-1 turnover frequency) and recyclability (reusable five times with 3 % activity loss) for the hydrogenolysis of levulinic acid to γ-valerolactone. Compared with the mesoporous carbon without N-doping and conventional activated carbon, the introduction of N-dopant effectively improved the dispersion of Ru nanoparticles, decreased the average size of Ru nanoparticles to as small as 1.32 nm, and improved the adsorption of levulinic acid, which contributed to the increase in the activity of the catalyst. Additionally, the embedding method increased the interaction between Ru nanoparticles and carbon support in contrast with the conventional impregnation method, thus preventing the Ru nanoparticles from migration, aggregation, and leaching from the carbon surface and therefore increasing the reusability of the catalyst.
Keywords: embedding method; hydrogenolysis; levulinic acid; ruthenium; γ-valerolactone.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γ-Valerolactone.Chem Asian J. 2016 Oct 6;11(19):2792-2796. doi: 10.1002/asia.201600453. Epub 2016 Jun 20. Chem Asian J. 2016. PMID: 27305341
-
Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO2-SiO2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone.Int J Mol Sci. 2021 Feb 9;22(4):1721. doi: 10.3390/ijms22041721. Int J Mol Sci. 2021. PMID: 33572104 Free PMC article.
-
Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.ChemSusChem. 2015 Aug 10;8(15):2520-8. doi: 10.1002/cssc.201500331. Epub 2015 Jun 18. ChemSusChem. 2015. PMID: 26089180
-
Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.ChemSusChem. 2016 Aug 23;9(16):2037-47. doi: 10.1002/cssc.201600517. Epub 2016 Jul 28. ChemSusChem. 2016. PMID: 27464831 Review.
-
Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.ChemSusChem. 2012 Sep;5(9):1657-67. doi: 10.1002/cssc.201200111. Epub 2012 Aug 13. ChemSusChem. 2012. PMID: 22890968 Review.
Cited by
-
Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO2 bimetallic catalysts.RSC Adv. 2021 Dec 22;12(1):602-610. doi: 10.1039/d1ra05804e. eCollection 2021 Dec 20. RSC Adv. 2021. PMID: 35424528 Free PMC article.
-
Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.Int J Mol Sci. 2022 Jan 12;23(2):799. doi: 10.3390/ijms23020799. Int J Mol Sci. 2022. PMID: 35054984 Free PMC article.
-
Ruthenium catalysts for hydrogenation of biomass-based levulinic acid for efficient γ-valerolactone synthesis.iScience. 2025 May 23;28(7):112734. doi: 10.1016/j.isci.2025.112734. eCollection 2025 Jul 18. iScience. 2025. PMID: 40687825 Free PMC article. Review.
-
Functionalized Biochars as Supports for Ru/C Catalysts: Tunable and Efficient Materials for γ-Valerolactone Production.Nanomaterials (Basel). 2023 Mar 22;13(6):1129. doi: 10.3390/nano13061129. Nanomaterials (Basel). 2023. PMID: 36986022 Free PMC article.
-
The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source.Molecules. 2020 Nov 17;25(22):5362. doi: 10.3390/molecules25225362. Molecules. 2020. PMID: 33212838 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources