Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
- PMID: 28328988
- PMCID: PMC5362078
- DOI: 10.1371/journal.pone.0174165
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
Abstract
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.
Conflict of interest statement
Figures
References
-
- Vickerman K (1976) Comparative cell biology of the kinetoplastid flagellates In: Vickerman K, Preston TM, editors. Biology of Kinetoplastida. London: Academic Press; pp. 35–130.
-
- Yurchenko V, Kolesnikov AA. [Minicircular kinetoplast DNA of Trypanosomatidae]. Mol Biol (Mosk). 2001; 35: 3–13. - PubMed
-
- Vickerman K. The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol. 1994; 24: 1317–1331. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
