Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov;37(7):819-832.
doi: 10.1080/07388551.2016.1261081. Epub 2017 Mar 22.

Recent developments in the use of tyrosinase and laccase in environmental applications

Affiliations
Review

Recent developments in the use of tyrosinase and laccase in environmental applications

Sidy Ba et al. Crit Rev Biotechnol. 2017 Nov.

Abstract

Our current global environmental challenges include the reduction of harmful chemicals and their derivatives. Bioremediation has been a key strategy to control the massive presence of chemicals in the environment. Enzymes including the phenoloxidases, laccases and tyrosinases, are increasingly being investigated as "green products" in the removal of many chemical contaminants in waters and soils. Both phenoloxidases are widespread in nature and attractive biocatalysts due to their ability to use readily available molecular oxygen as sole cofactor for their catalytic elimination of a large number of chemicals. Taking advantage of their catalytic potentials, remarkable advances have been made in the engineering of laccases to produce suitable biocatalysts in environmental applications. Studies about novel strategies of laccase immobilization and insolubilization for the treatment of chemical contaminants were provided. Likewise, tyrosinases are gaining increasing interest in environmental applications due to their catalytic similarities with laccases although they remain far less investigated to date. This disparity was addressed in this review along with the molecular features and catalytic mechanism of tyrosinases relevant in environmental applications. A perspective on the future use of laccases and tyrosinases in bioremediation was discussed.

Keywords: Biocatalysts; environmental applications; laccase; phenoloxidases; tyrosinase.

PubMed Disclaimer

MeSH terms

LinkOut - more resources