Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 15;263(11):5170-5.

Subunit interaction sites between the regulatory and catalytic subunits of cAMP-dependent protein kinase. Heterobifunctional cross-linking reagents lead to photodependent and photoindependent cross-linking

Affiliations
  • PMID: 2833497
Free article

Subunit interaction sites between the regulatory and catalytic subunits of cAMP-dependent protein kinase. Heterobifunctional cross-linking reagents lead to photodependent and photoindependent cross-linking

E A First et al. J Biol Chem. .
Free article

Abstract

Heterobifunctional cross-linking reagents have been introduced into the catalytic subunit of cAMP-dependent protein kinase as potential probes for identifying specific points of contact between the catalytic (C)-subunit and the type II regulatory (RII) subunit in the holoenzyme complex. Since at least one of the 2 cysteine residues in the C-subunit is known to be in close proximity to the interaction site between the C-subunit and the RII-subunit, these cysteines were chosen initially as targets for covalent modification by two heterobifunctional cross-linking reagents, p-azidophenacyl bromide and N-4-(azidophenylthio)phthalimide. Treatment of the C-subunit with each reagent led to the stoichiometric modification of Cys-199 and Cys-343. In each case, the modified C-subunit was still capable of forming a stable complex with the RII-subunit. Both modified C-subunits also could be covalently cross-linked to the RII-subunit; however, the mechanisms for cross-linking differed. Catalytic subunit modified by p-azidophenacyl bromide was cross-linked to the RII-subunit in a photodependent manner by a mechanism that was maximal when holoenzyme was formed and cAMP was absent. In contrast, the C-subunit modified by N-4-(azidophenylthio)phthalimide was cross-linked to the RII-subunit by a mechanism that was independent of photolysis. In this case, cross-linking was enhanced by the presence of cAMP. This cross-linking was the result of a disulfide interchange between a modified cysteine in the C-subunit and an unmodified cysteine in the RII-subunit.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources