Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 1;74(7):521-527.
doi: 10.2146/ajhp150690.

Automated detection of look-alike/sound-alike medication errors

Affiliations

Automated detection of look-alike/sound-alike medication errors

Christine Rash-Foanio et al. Am J Health Syst Pharm. .

Abstract

Purpose: The development and evaluation of an algorithm for detecting potential medication errors due to look-alike/sound-alike (LASA) drug names are described.

Summary: A computer algorithm that detects potential LASA errors by analyzing medication orders and diagnostic claims data was developed. The algorithm flags a potential error when (1) a medication order is not justified by a diagnosis documented in the patient's record, (2) another medication whose orthographic similarity to the index drug exceeds a specified threshold exists, and (3) the latter drug has an indication that matches an active documented diagnosis. A review of medication orders and diagnostic claims at a large health system identified cases in which cycloserine was ordered but cyclosporine was the intended treatment. Subsequent review of all cycloserine orders over a 7-year period indicated that 11 of 16 orders were erroneous, prompting placement of an alert regarding the potential for LASA errors involving cycloserine and cyclosporine in the electronic order-entry system. Automated detection and confirmation of LASA errors via chart review can be used retrospectively to identify problematic pairs of drug names and to assess associated error rates within a healthcare system. The same techniques can be used to prevent errors in real time through indication alerts if accurate diagnostic information is available at the time of order entry.

Conclusion: Automated methods involving the use of medication orders, diagnostic claims, and indications can be used to detect and prevent LASA errors.

Keywords: Systematized Nomenclature of Medicine; cycloserine; cyclosporine; electronic prescribing; medication errors; patient harm.

PubMed Disclaimer

Publication types