Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 23;442(1):131-8.
doi: 10.1016/0006-8993(88)91440-0.

Norepinephrine decreases synaptic inhibition in the rat hippocampus

Affiliations

Norepinephrine decreases synaptic inhibition in the rat hippocampus

D V Madison et al. Brain Res. .

Abstract

The effects of norepinephrine (NE) on inhibitory synaptic potentials were studied on CA1 pyramidal neurons in the hippocampal slice in vitro. Norepinephrine caused the appearance of multiple population spikes in the CA1 region of the hippocampal slice, reminiscent of the actions of gamma-aminobutyric acid (GABA) antagonists. Intracellular recording revealed that NE causes a marked and reversible reduction in inhibitory postsynaptic potentials (IPSPs) recorded in CA1 pyramidal cells. This reduced IPSP results in a larger intracellular excitatory postsynaptic potential (EPSP), which can cause the cell to fire more than one action potential. This disinhibitory effect of NE appears to be mediated by an alpha-receptor, and occurs at a site presynaptic to the pyramidal cell, since NE does not change the reversal potential of the IPSP nor does it affect the amplitude or the reversal potential of iontophoretic GABA responses. In addition to reducing evoked IPSPs, NE causes an increase in the frequency of spontaneous IPSPs, suggesting that inhibition of interneuronal firing may not account for this disinhibitory action of NE.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources