Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul;66(7):2019-2032.
doi: 10.2337/db16-1329. Epub 2017 Mar 24.

A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

Alisa Manning  1   2   3 Heather M Highland  4   5 Jessica Gasser  1 Xueling Sim  6   7 Taru Tukiainen  1   8   9 Pierre Fontanillas  1   10 Niels Grarup  11 Manuel A Rivas  12 Anubha Mahajan  12 Adam E Locke  6 Pablo Cingolani  13   14 Tune H Pers  1   11   15   16 Ana Viñuela  17   18   19 Andrew A Brown  20   21 Ying Wu  22 Jason Flannick  1   23 Christian Fuchsberger  6 Eric R Gamazon  24   25 Kyle J Gaulton  12   26 Hae Kyung Im  24 Tanya M Teslovich  6 Thomas W Blackwell  6 Jette Bork-Jensen  11 Noël P Burtt  1 Yuhui Chen  12 Todd Green  1 Christopher Hartl  1 Hyun Min Kang  6 Ashish Kumar  12   27 Claes Ladenvall  28 Clement Ma  6 Loukas Moutsianas  12 Richard D Pearson  12 John R B Perry  12   29   30 N William Rayner  12   31   32 Neil R Robertson  12   31 Laura J Scott  6 Martijn van de Bunt  12   31 Johan G Eriksson  33   34   35   36   37 Antti Jula  37 Seppo Koskinen  37 Terho Lehtimäki  38 Aarno Palotie  1   2   39 Olli T Raitakari  40   41 Suzanne B R Jacobs  1 Jennifer Wessel  42   43 Audrey Y Chu  44 Robert A Scott  30 Mark O Goodarzi  45   46 Christine Blancher  47 Gemma Buck  47 David Buck  47 Peter S Chines  48 Stacey Gabriel  1 Anette P Gjesing  11 Christopher J Groves  31 Mette Hollensted  11 Jeroen R Huyghe  6 Anne U Jackson  6 Goo Jun  6 Johanne Marie Justesen  11 Massimo Mangino  17 Jacquelyn Murphy  1 Matt Neville  31 Robert Onofrio  1 Kerrin S Small  17 Heather M Stringham  6 Joseph Trakalo  47 Eric Banks  1 Jason Carey  1 Mauricio O Carneiro  1 Mark DePristo  1 Yossi Farjoun  1 Timothy Fennell  1 Jacqueline I Goldstein  1   8 George Grant  1 Martin Hrabé de Angelis  49   50   51 Jared Maguire  1 Benjamin M Neale  1   8 Ryan Poplin  1 Shaun Purcell  1   2   52 Thomas Schwarzmayr  53 Khalid Shakir  1 Joshua D Smith  54 Tim M Strom  53   55 Thomas Wieland  53 Jaana Lindstrom  56 Ivan Brandslund  57   58 Cramer Christensen  59 Gabriela L Surdulescu  17 Timo A Lakka  60   61   62 Alex S F Doney  63 Peter Nilsson  64 Nicholas J Wareham  30 Claudia Langenberg  30 Tibor V Varga  65 Paul W Franks  65   66   67 Olov Rolandsson  67 Anders H Rosengren  28 Vidya S Farook  68 Farook Thameem  69 Sobha Puppala  68 Satish Kumar  68 Donna M Lehman  69 Christopher P Jenkinson  69   70 Joanne E Curran  68 Daniel Esten Hale  71 Sharon P Fowler  69 Rector Arya  71 Ralph A DeFronzo  69 Hanna E Abboud  69 Ann-Christine Syvänen  72 Pamela J Hicks  73   74   75 Nicholette D Palmer  73   74   75 Maggie C Y Ng  73   74 Donald W Bowden  73   74   75 Barry I Freedman  76 Tõnu Esko  1   9   77   78 Reedik Mägi  78 Lili Milani  78 Evelin Mihailov  78 Andres Metspalu  78 Narisu Narisu  48 Leena Kinnunen  37 Lori L Bonnycastle  48 Amy Swift  48 Dorota Pasko  29 Andrew R Wood  29 João Fadista  28 Toni I Pollin  79 Nir Barzilai  80 Gil Atzmon  80   81 Benjamin Glaser  82 Barbara Thorand  50   83 Konstantin Strauch  84   85 Annette Peters  50   83   86 Michael Roden  87   88 Martina Müller-Nurasyid  84   85   86   89 Liming Liang  90   91 Jennifer Kriebel  50   83   92 Thomas Illig  92   93   94 Harald Grallert  50   83   92 Christian Gieger  84 Christa Meisinger  83 Lars Lannfelt  95 Solomon K Musani  96 Michael Griswold  97 Herman A Taylor Jr  98 Gregory Wilson Sr  99 Adolfo Correa  98 Heikki Oksa  100 William R Scott  101 Uzma Afzal  101 Sian-Tsung Tan  102   103 Marie Loh  101   104   105 John C Chambers  101   103   106 Jobanpreet Sehmi  102   103 Jaspal Singh Kooner  102 Benjamin Lehne  101 Yoon Shin Cho  107 Jong-Young Lee  108 Bok-Ghee Han  109 Annemari Käräjämäki  110   111 Qibin Qi  66   112 Lu Qi  66   113 Jinyan Huang  90 Frank B Hu  66   90 Olle Melander  114 Marju Orho-Melander  115 Jennifer E Below  116 David Aguilar  117 Tien Yin Wong  118   119 Jianjun Liu  7   120 Chiea-Chuen Khor  7   118   119   120   121 Kee Seng Chia  7 Wei Yen Lim  7 Ching-Yu Cheng  7   118   119   122 Edmund Chan  123 E Shyong Tai  7   123   124 Tin Aung  118   119 Allan Linneberg  125   126   127 Bo Isomaa  35   128 Thomas Meitinger  53   55   86 Tiinamaija Tuomi  35   129 Liisa Hakaste  35 Jasmina Kravic  28 Marit E Jørgensen  130 Torsten Lauritzen  131 Panos Deloukas  32 Kathleen E Stirrups  132   133 Katharine R Owen  31   134 Andrew J Farmer  135 Timothy M Frayling  29 Stephen P O'Rahilly  136 Mark Walker  137 Jonathan C Levy  31 Dylan Hodgkiss  17 Andrew T Hattersley  138 Teemu Kuulasmaa  139 Alena Stančáková  139 Inês Barroso  32   136 Dwaipayan Bharadwaj  140 Juliana Chan  141   142   143 Giriraj R Chandak  144 Mark J Daly  8 Peter J Donnelly  12   145 Shah B Ebrahim  146 Paul Elliott  101   147 Tasha Fingerlin  148 Philippe Froguel  149 Cheng Hu  150 Weiping Jia  150 Ronald C W Ma  141   142   143 Gilean McVean  12 Taesung Park  151   152 Dorairaj Prabhakaran  146 Manjinder Sandhu  32   153 James Scott  102 Rob Sladek  14   154   155 Nikhil Tandon  156 Yik Ying Teo  7   157   158 Eleftheria Zeggini  32 Richard M Watanabe  159   160   161 Heikki A Koistinen  37   162   163 Y Antero Kesaniemi  164 Matti Uusitupa  165 Timothy D Spector  17 Veikko Salomaa  37 Rainer Rauramaa  166 Colin N A Palmer  167 Inga Prokopenko  12   31   168 Andrew D Morris  169 Richard N Bergman  170 Francis S Collins  48 Lars Lind  171 Erik Ingelsson  72   172 Jaakko Tuomilehto  56   173   174   175 Fredrik Karpe  31   134 Leif Groop  28 Torben Jørgensen  125   176 Torben Hansen  11   177 Oluf Pedersen  11 Johanna Kuusisto  139   178 Gonçalo Abecasis  6 Graeme I Bell  179 John Blangero  68 Nancy J Cox  24 Ravindranath Duggirala  68 Mark Seielstad  180   181 James G Wilson  182 Josee Dupuis  183   184 Samuli Ripatti  20   39   185 Craig L Hanis  116 Jose C Florez  1   2   3   186 Karen L Mohlke  22 James B Meigs  1   3   187 Markku Laakso  139   178 Andrew P Morris  12   78   188 Michael Boehnke  6 David Altshuler  1   3   9   23   186   189 Mark I McCarthy  12   31   134 Anna L Gloyn  12   31   134 Cecilia M Lindgren  1   12   190
Affiliations

A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

Alisa Manning et al. Diabetes. 2017 Jul.

Abstract

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.

PubMed Disclaimer

Figures

Figure 1
Figure 1
AKT2 Pro50Thr association with FI levels. A: For each study, the square represents the estimate of the additive genetic effect for the association of the AKT2 Pro50Thr allele with log-transformed FI levels and the horizontal line gives the corresponding 95% CI of the estimate. Inverse-variance meta-analyses were performed for all discovery studies, all replication studies, and all studies combined. The vertical dashed lines indicate the 95% CI for the estimate obtained in the meta-analysis of all studies combined. DPS, The Finnish Diabetes Prevention Study; DR’s EXTRA, Dose-Responses to Exercise Training study; FIN-D2D, National Diabetes Prevention Programme in Finland; PPP, Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study. B: MAF for each available region and ancestry. Across countries of the world, the MAF ranges from 0 to 1.1%. The relative sample sizes (N) for each region/ancestry are displayed with the blue circles and the relative MAFs of AKT2 Pro50Thr are displayed with the purple circles, with the size of the circles showing comparative differences. Within Finland (inset), where the MAF ranges from 0.9 to 1.7%, birthplace and study center data were used to show the allele distribution across the country. aFINRISK 2007, bFIN-D2D 2007, cFINRISK 1997 and 2002.
Figure 2
Figure 2
Expression and conservation properties. A: Amino acid alignment and conservation of the three AKT proteins in vertebrates. The x-axis gives the amino acid position and the height of the lines shows the conservation score across 100 vertebrate genome alignments. The functional domains are the PH domain (blue) and the kinase domain (green). The position of AKT2 Pro50Thr is shown in red and the locations of the other AKT2 disease-causing mutations (–40) are shown in orange: Glu17Lys, Arg208Lys, Arg274His, and Arg467Trp. B: WebLogo plots of amino acids 35–60 are shown for AKT2, AKT1, and AKT3, contrasting the homology of the three isoforms. The height of letters gives the relative frequency of different amino acids across the 100 vertebrate species, with the colors showing amino acids with similar charge. C: Expression of AKT1, AKT2, and AKT3 in eight insulin-sensitive tissues using RNA sequencing data from the GTEx Consortium. subcut., subcutaneous.
Figure 3
Figure 3
Functional properties of AKT2-Thr50. A: Predicted protein structure of AKT2. Domain and variants are highlighted as in Fig. 2A. The relative spatial positioning of the AKT2-Pro50 residue is magnified within the inset. B: HeLa cells were infected with lentiviral V5-AKT2, V5-AKT2-Lys17, V5-AKT2-Thr50, V5-AKT2-Lys208, V5-AKT2-His274, or V5-AKT2-Trp467; starved for 18 h (white bar); and stimulated for 20 min with 100 nmol/L insulin (gray bar). V5-tagged AKT2 was isolated from cell lysates with anti-V5 agarose beads and incubated with GSK3β-GST peptide in an in vitro kinase assay. Quantification of phosphorylated substrate peptide (pGSK3β) relative to total peptide (GST-GSK3β) is shown at the inset. Immunoblots and quantification shown are representative of three independent replicates. Linear model statistical analyses across all three independent replicates are available in Supplementary Fig. 9. The in vitro kinase was immunoblotted (IB) with the indicated antibodies. C: HuH7 cells were infected with lentiviral V5-AKT2, V5-AKT2-Thr50, or control pLX304. At 72 h, relative cellular proliferation was determined with WST-1 assay of HuH7 cells. Error bars represent SD. ***P = 4.5 × 10−5.
Figure 4
Figure 4
Genetic architecture of rare, low-frequency, and common variants associated with FI levels. In this plot, the absolute values of the percent change in FI level due to rare monogenic mutations (diamonds) and common genetic variants (circles) are plotted against the MAF of the variant. The extremely rare monogenic mutations (above the dashed line to the left of the x-axis) were observed in 2–18 individuals (,–40,48,53,54), with the height of the point indicating the percent change in FI levels of mutation carriers from 40 pmol/L, an estimate of population mean FI level. Mutations in INSR and AKT2 p.Arg274His cause compensatory hyperinsulinemia, individuals with TBC1D4 p.Arg363Ter show normal FI levels but postprandial hyperinsulinemia, and mutations in PTEN cause enhanced insulin sensitivity providing protection against type 2 diabetes. For common variants, the percent change in FI levels per insulin-increasing allele is plotted above the solid horizontal axis. These observations are from sequencing (6) and array-based genome-wide association studies (3). For several genes, the effects from rare mutations can be compared with the effects of common variants in or near the gene: PPARG (blue), TBC1D4 (green), PTEN (orange), and AKT2 (red). aDonohue syndrome: biallelic LoF mutations in INSR (54). bRabson-Mendenhall syndrome: biallelic LoF mutations in INSR (54). cPostpubertal severe insulin resistance: heterozygous or homozygous LoF mutations in INSR (54). dLoF PTEN mutations cause Cowden syndrome in which carriers exhibit a lowered FI level (mean 29 pmol/L) compared with matched control subjects (3). eCarriers with the AKT2 p.Glu17Lys mutation were described with hypoinsulinemic hypoketotic hypoglycemia and hemihypertrophy with undetectable serum insulin (37,38).

References

    1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840–846 - PubMed
    1. Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med 1994;11:286–292 - PubMed
    1. Manning AK, Hivert MF, Scott RA, et al.; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Multiple Tissue Human Expression Resource (MUTHER) Consortium . A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012;44:659–669 - PMC - PubMed
    1. Estrada K, Aukrust I, Bjørkhaug L, et al.; SIGMA Type 2 Diabetes Consortium . Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population [published correction appears in JAMA 2014;312:1932]. JAMA 2014;311:2305–2314 - PMC - PubMed
    1. Williams AL, Jacobs SB, Moreno-Macías H, et al.; SIGMA Type 2 Diabetes Consortium . Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014;506:97–101 - PMC - PubMed

Grants and funding