Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb;50(1):195-212.
doi: 10.3758/s13428-017-0862-1.

Estimating psychological networks and their accuracy: A tutorial paper

Affiliations

Estimating psychological networks and their accuracy: A tutorial paper

Sacha Epskamp et al. Behav Res Methods. 2018 Feb.

Abstract

The usage of psychological networks that conceptualize behavior as a complex interplay of psychological and other components has gained increasing popularity in various research fields. While prior publications have tackled the topics of estimating and interpreting such networks, little work has been conducted to check how accurate (i.e., prone to sampling variation) networks are estimated, and how stable (i.e., interpretation remains similar with less observations) inferences from the network structure (such as centrality indices) are. In this tutorial paper, we aim to introduce the reader to this field and tackle the problem of accuracy under sampling variation. We first introduce the current state-of-the-art of network estimation. Second, we provide a rationale why researchers should investigate the accuracy of psychological networks. Third, we describe how bootstrap routines can be used to (A) assess the accuracy of estimated network connections, (B) investigate the stability of centrality indices, and (C) test whether network connections and centrality estimates for different variables differ from each other. We introduce two novel statistical methods: for (B) the correlation stability coefficient, and for (C) the bootstrapped difference test for edge-weights and centrality indices. We conducted and present simulation studies to assess the performance of both methods. Finally, we developed the free R-package bootnet that allows for estimating psychological networks in a generalized framework in addition to the proposed bootstrap methods. We showcase bootnet in a tutorial, accompanied by R syntax, in which we analyze a dataset of 359 women with posttraumatic stress disorder available online.

Keywords: Bootstrap; Network psychometrics; Psychological networks; Replicability; Tutorial.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Simulated network structure (left panel) and the importance of each node quantified in centrality indices (right panel). The simulated network is a chain network in which each edge has the same absolute strength. The network model used was a Gaussian graphical model in which each edge represents partial correlation coefficients between two variables after conditioning on all other variables
Fig. 2
Fig. 2
Estimated network structure based on a sample of 500 people simulated using the true model shown in Fig. 1 (left panel) and computed centrality indices (right panel). Centrality indices are shown as standardized z-scores. Centrality indices show that nodes B and C are the most important nodes, even though the true model does not differentiate in importance between nodes
Fig. 3
Fig. 3
Estimated network structure of 17 PTSD symptoms (left panel) and the corresponding centrality indices (right panel). Centrality indices are shown as standardized z-scores. The network structure is a Gaussian graphical model, which is a network of partial correlation coefficients
Fig. 4
Fig. 4
Bootstrapped confidence intervals of estimated edge-weights for the estimated network of 17 PTSD symptoms. The red line indicates the sample values and the gray area the bootstrapped CIs. Each horizontal line represents one edge of the network, ordered from the edge with the highest edge-weight to the edge with the lowest edge-weight. In the case of ties (for instance, multiple edge-weights were estimated to be exactly 0), the mean of the bootstrap samples was used in ordering the edges. The y-axis labels have been removed to avoid cluttering
Fig. 5
Fig. 5
Average correlations between centrality indices of networks sampled with persons dropped and the original sample. Lines indicate the means and areas indicate the range from the 2.5th quantile to the 97.5th quantile
Fig. 6
Fig. 6
Bootstrapped difference tests (α = 0.05) between edge-weights that were non-zero in the estimated network (above) and node strength of the 17 PTSD symptoms (below). Gray boxes indicate nodes or edges that do not differ significantly from one-another and black boxes represent nodes or edges that do differ significantly from one-another. Colored boxes in the edge-weight plot correspond to the color of the edge in Fig. 3, and white boxes in the centrality plot show the value of node strength
Fig. 7
Fig. 7
Simulation results showing the CS-coefficient of 24,000 simulated datasets. Datasets were generated using chain networks (partial correlations) of 10 nodes with edge-weights set to 0.25 or −0.25. Edges were randomly rewired to obtain a range from networks ranging from networks in which all centralities are equal to networks in which all centralities differ. The CS-coefficient quantifies the maximum proportion of cases that can be dropped at random to retain, with 95 % certainty, a correlation of at least 0.7 with the centralities of the original network. Boxplots show the distribution of CS-coefficients obtained in the simulations. For example, plots on top indicate that the CS-coefficient mostly stays below 0.25 when centralities do not differ from one-another (chain graph as shown in Fig. 1)
Fig. 8
Fig. 8
Simulation results showing the rejection rate of the bootstrapped difference test for edge-weights on 6,000 simulated datasets. Datasets were generated using chain networks (partial correlations) of ten nodes with edge-weights set to 0.3. Only networks that were nonzero in the true network were compared to one-another. Lines indicate the proportion of times that two random edge-weights were significantly different (i.e., the null-hypothesis was rejected) and their CI (plus and minus 1.96 times the standard error). Solid horizontal lines indicate the intended significance level and horizontal dashed line the expected significance level. The y-axis is drawn using a logarithmic scale
Fig. 9
Fig. 9
Simulation results showing the rejection rate of the bootstrapped difference test for centrality indices. Datasets were generated using the same design as in Fig. 7. Lines indicate the proportion of times that two random centralities were significantly different (i.e., the null-hypothesis was rejected at α = 0.05)

References

    1. American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (4th ed., text rev.). Washington, DC, USA: American Psychiatric Association.
    1. Bache, S.M., & Wickham, H. (2014). magrittr: A Forward-Pipe Operator for R. R package version 1.5. https://CRAN.R-project.org/package=magrittr.
    1. Barzel B, Biham O. Quantifying the connectivity of a network: The network correlation function method. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2009;80(4):046104. doi: 10.1103/PhysRevE.80.046104. - DOI - PubMed
    1. Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. Bmj. 1995;310(6973):170. doi: 10.1136/bmj.310.6973.170. - DOI - PMC - PubMed
    1. Bollen KA, Stine RA. Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research. 1992;21(2):205–229. doi: 10.1177/0049124192021002004. - DOI

LinkOut - more resources