Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun:129:188-198.
doi: 10.1016/j.biomaterials.2017.03.021. Epub 2017 Mar 18.

Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering

Affiliations

Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering

Gozde Eke et al. Biomaterials. 2017 Jun.

Abstract

The aim of this study was to design a dermal substitute containing adipose derived stem cells (ADSC) that can be used to improve the regeneration of skin on difficult wound beds by stimulating rapid neovascularization. This was achieved by first synthesizing methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) precursors which could be stored at -80 oC after lyophilisation. Polymer precursors were then dissolved in media (in 15:1 ratio), ADSCs added together with the photoinitiator and crosslinked with 40 s of UV. Hydrogels degraded by 50% over 3 weeks in an in vitro environment. ADSC loaded hydrogels could be easily handled with forceps (compressive modulus was 6 kPa). Transparency of the gel would allow a full field-of-view of a wound site. The hydrogels provided a suitable microenvironment for ADSC proliferation as shown by the filopodia observed in confocal micrographs. In vivo studies demonstrated that stem cell loaded hydrogels increased vascularization by up to 3 fold compared to their cell free counterparts. In conclusion, GelMA/HAMA hydrogels loaded with ADSC showed the desired proliferative and angiogenic properties essential to promote angiogenesis for wound healing and improving survival of tissue engineered skin.

Keywords: Adipose derived stem cells; Angiogenesis; Bicomponent hydrogel; Dermal substitute; Photocrosslinking.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms