Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 27;21(1):74.
doi: 10.1186/s13054-017-1662-9.

Hemoadsorption by CytoSorb in septic patients: a case series

Affiliations

Hemoadsorption by CytoSorb in septic patients: a case series

Klaus Kogelmann et al. Crit Care. .

Abstract

Background: Septic shock, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, is a highly lethal condition that causes substantial morbidity and mortality among critically ill patients. One of the hallmarks of sepsis is the excessive release of cytokines and other inflammatory mediators causing refractory hypotension, tissue damage, metabolic acidosis and ultimately multiple organ failure. In this context, cytokine reduction by hemoadsorption represents a new concept for blood purification, developed to attenuate the overwhelming systemic levels of pro-inflammatory and anti-inflammatory mediators released in the early phase of sepsis.

Methods: In the present case series, we evaluated the impact of a new hemoadsorption device (CytoSorb) used as adjunctive therapy, on hemodynamics and clinically relevant outcome parameters in 26 critically ill patients with septic shock and in need of renal replacement therapy.

Results: We found that treatment of these patients with septic shock was associated with hemodynamic stabilization and a reduction in blood lactate levels. Actual mortality in the overall patient population was lower than mortality predicted by acute physiology and chronic health evaluation II (APACHE II). These effects seem to be more pronounced in patients in whom therapy started within 24 h of sepsis diagnosis, whereas a delay in the start of therapy was associated with a poor response to therapy in terms of reduction of catecholamine demand and survival. Moreover, from our patient population, medical patients seemed to benefit more than post-surgical patients in terms of survival. Treatment using the CytoSorb device was safe and well-tolerated with no device-related adverse events during or after the treatment sessions.

Conclusion: Hemoadsorption using CytoSorb resulted in rapid hemodynamic stabilization and increased survival, particularly in patients in whom therapy was started early. Given the positive clinical experience of this case series, randomized controlled trials are urgently needed to define the potential benefits of this new treatment option.

Keywords: Catecholamines; CytoSorb; Cytokine storm; Cytokines; Hemoadsorption; Hemodynamics; Hemoperfusion; Inflammation; Sepsis; Septic shock.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Effect of CytoSorb hemoadsorption on hemodynamics in relation to survival. Demand for norepinephrine to achieve a certain mean arterial pressure (NOR/MAP) (μg/h*mmHg-1) before (pre) and after (post) CytoSorb treatments in the overall patient population and in 28-day, ICU, and hospital survivors. In each Tukey boxplot the whiskers have equal lengths of 1.5 IQR. Dots represent outliers
Fig. 2
Fig. 2
Effect of CytoSorb hemoadsorption on blood lactate levels in relation to survival. Lactate levels (mg/dl) before (pre) and after (post) CytoSorb treatments in the overall patient population and in 28-day, ICU, and hospital survivors. In each Tukey boxplot the whiskers have equal lengths of 1.5 IQR. Dots represent outliers
Fig. 3
Fig. 3
Relationship between delay in starting therapy and the severity of illness using the acute physiology and chronic health evaluation II (APACHE II), simplified acute physiology score II (SAPS II) and sequential organ failure assessment (SOFA) score before (pre) treatment. In each Tukey boxplot the whiskers have equal lengths of 1.5 IQR. Dots represent outliers

Similar articles

Cited by

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. - DOI - PMC - PubMed
    1. Angus DC, Van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–851. doi: 10.1056/NEJMra1208623. - DOI - PubMed
    1. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33:606–618. doi: 10.1007/s00134-006-0517-7. - DOI - PubMed
    1. Coopersmith CM, Wunsch H, Fink MP, Linde-Zwirble WT, Olsen KM, Sommers MS, et al. A comparison of critical care research funding and the financial burden of critical illness in the United States. Crit Care Med. 2012;40:1072–1079. doi: 10.1097/CCM.0b013e31823c8d03. - DOI - PubMed
    1. Mackenzie I. The haemodynamics of human septic shock. Anaesthesia. 2001;56:130–144. doi: 10.1046/j.1365-2044.2001.01866.x. - DOI - PubMed

LinkOut - more resources