Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May 5;263(13):6058-62.

Yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase. Properties of phospho and dephospho forms and of two mutants in which serine 11 has been changed by site-directed mutagenesis

Affiliations
  • PMID: 2834362
Free article

Yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase. Properties of phospho and dephospho forms and of two mutants in which serine 11 has been changed by site-directed mutagenesis

F Marcus et al. J Biol Chem. .
Free article

Abstract

The properties of dephospho- and phosphofructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae and of two mutant enzymes in which the phosphorylatable Ser11 had been changed by site-directed mutagenesis (Ser----Ala and Ser----Asp) were studied to clarify the role of cyclic AMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase. The mutant enzymes and wild type Ser11 fructose-1,6-bisphosphatase were overexpressed and purified to homogeneity. Phosphofructose-1,6-bisphosphatase was prepared by in vitro phosphorylation. The comparison of the properties of the above enzymes demonstrated that all four had similar maximum activity. However, the phosphoenzyme was about 3-fold more sensitive to AMP and fructose 2,6-bisphosphate inhibition than the dephosphoenzyme, suggesting that regulation operates in vivo by this mechanism, leading to decreased enzyme activity. The purified mutant enzymes Ala11 and Asp11 exhibited properties closely similar to those of dephospho- and phosphofructose-1,6-bisphosphatase, respectively. These results indicate that the functional group at residue 11 is an important factor in the regulation of fructose-1,6-bisphosphatase activity and that Ser(P) can be functionally substituted by Asp in this enzyme.

PubMed Disclaimer

Publication types

LinkOut - more resources