Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar 23:23:19.
doi: 10.1186/s40409-017-0110-2. eCollection 2017.

Alpha-type phospholipase A2 inhibitors from snake blood

Affiliations
Review

Alpha-type phospholipase A2 inhibitors from snake blood

Norival A Santos-Filho et al. J Venom Anim Toxins Incl Trop Dis. .

Abstract

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

Keywords: Myotoxin; Myotoxin inhibitor; Phospholipases A2; Snake blood; αPLI.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
In silico model of αBaltMIP trimer (available at Model Archive database under the DOI 10.5452/ma-a4btt) and αBaltMIP monomer (available at Model Archive database under DOI 10.5452/ma-a2iil) with a detailed view of the central pore (yellow), highlighting the four conserved cationic residues R38, K52, R89 and H90. In addition, the hydrophobic core (cyan), the 13–36 residues of the neck C-terminal region (red) and the Y144 (blue) are depicted

Similar articles

Cited by

References

    1. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009;3(12):e569. doi: 10.1371/journal.pntd.0000569. - DOI - PMC - PubMed
    1. WHO. WHO Expert Committee on Biological Standardization. 59th report. WHO Technical Report Series, no. 964. 2012. Available: http://www.who.int/biologicals/WHO_TRS_964_web.pdf. - PubMed
    1. Gutiérrez JM. Current challenges for confronting the public health problem of snakebite envenoming in Central America. J Venom Anim Toxins Incl Trop Dis. 2014;20(1):7. doi: 10.1186/1678-9199-20-7. - DOI - PMC - PubMed
    1. Chippaux JP. Epidemiology of envenomations by terrestrial venomous animals in Brazil based on case reporting: from obvious facts to contingencies. J Venom Anim Toxins Incl Trop Dis. 2015;21:13. doi: 10.1186/s40409-015-0011-1. - DOI - PMC - PubMed
    1. Bagcchi S. Experts call for snakebite to be re-established as a neglected tropical disease. BMJ. 2015;351:h5313. doi: 10.1136/bmj.h5313. - DOI - PubMed

LinkOut - more resources