Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May;50(5):1522-8.
doi: 10.1111/j.1471-4159.1988.tb03039.x.

Differential regulation of phosphoinositide phosphodiesterase activity in brain membranes by guanine nucleotides and calcium

Affiliations

Differential regulation of phosphoinositide phosphodiesterase activity in brain membranes by guanine nucleotides and calcium

R A Gonzales et al. J Neurochem. 1988 May.

Abstract

We have shown previously that calcium and guanine nucleotides stimulate the activity of a phosphoinositide (PI) phosphodiesterase in membranes from rat cerebral cortex and that their effects are additive. To understand further guanine nucleotide- and calcium-stimulated PI phosphodiesterase activity, we have investigated the pH sensitivity and effects of inhibitors on the two modes of stimulation. NaF stimulates PI hydrolysis in brain membranes with an EC50 of 2 mM and a maximal effect at 10 mM, suggesting that a guanine nucleotide binding protein can regulate PI phosphodiesterase. Neomycin inhibited guanylylimidodiphosphate (GppNHp)-stimulated PI phosphodiesterase activity in a concentration-dependent manner, with 90% inhibition at 0.3 mM. Neomycin was not as effective at inhibiting calcium-dependent PI hydrolysis (32% inhibition at 0.3 mM). Chloroquine also had a greater inhibitory effect against GppNHp-stimulated PI phosphodiesterase activity compared to calcium-dependent activity. Guanine nucleotide- and NaF-dependent activations of PI phosphodiesterase were strongly pH-dependent, with greatest stimulation observed at pH 5-6 and inhibition at more alkaline pH. Calcium-stimulated PI hydrolysis was not as sensitive to changes in pH and had a peak of activity at pH 9. Our findings of different pH optima and differential sensitivity to inhibitors suggest that calcium and guanine nucleotides may regulate PI phosphodiesterase in rat cortical membranes through independent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources