Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 27;10(1):161.
doi: 10.1186/s13071-017-2096-6.

Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia

Affiliations

Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia

Ashwaq M Al Nazawi et al. Parasit Vectors. .

Abstract

Background: Pyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here.

Methods: Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel (Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes (CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls.

Results: Jeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival. PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain.

Conclusions: Despite their proximity, Makkah and Jeddah exhibit significant differences in pyrethroid resistance phenotypes, with some evidence to suggest a different balance of mechanisms, for example with more impact associated with CYP450s in the Jeddah strain, and the dual kdr mutations 989P and 1016G in the more resistant Makkah strain. The results overall demonstrate a major role for paired target site mutations in pyrethroid resistance and highlight their utility for diagnostic monitoring.

Keywords: Aedes aegypti; Dengue; Insecticide resistance; Knockdown resistance; Piperonyl butoxide (PBO); Saudi Arabia.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Dengue fever cases in cities of Saudi Arabia from 2013–2015
Fig. 2
Fig. 2
Susceptibility status of female Ae. aegypti to insecticides in 60 min bioassays with exposure to permethrin, deltamethrin, fenitrothion and bendiocarb. a Jeddah laboratory strain (light green) and field strain (dark green). b Makkah laboratory strain (light red) and field strain (dark red). Statistical significance is indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. Error bars are 95% confidence intervals
Fig. 3
Fig. 3
Deltamethrin 60 min bioassays with and without 60 min pre-exposure to the synergist PBO (PBO+, PBO- respectively). Statistical significance is indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. Error bars are 95% confidence intervals
Fig. 4
Fig. 4
Impacts of age and exposure duration on deltamethrin survivorship in a Jeddah (green), b Makkah (red) and c Cayman (blue). Statistically significant variation among exposure times (ANOVA) is indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. Error bars represent the 95% confidence intervals
Fig. 5
Fig. 5
Quantitative PCR analysis of candidate genes. Relative-fold changes compared to two susceptible strains a New Orleans, b Rockefeller are shown following normalisation to two endogenous reference genes. Error bars represent 95% confidence intervals. Significance is indicated for Rockefeller only where New Orleans is also significant (*P < 0.05, **P < 0.01)

Similar articles

Cited by

References

    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. doi: 10.1038/nature12060. - DOI - PMC - PubMed
    1. WHO. Dengue guidelines for diagnosis, treatment, prevention and control. WHO. 2009. http://www.who.int/csr/resources/publications/dengue_9789241547871/en/. Accessed 1 Nov 2016. - PubMed
    1. Morrison D, Legg TJ, Billings CW, Forrat R, Yoksan S, Lang J. A novel tetravalent dengue vaccine is well tolerated and immunogenic against all 4 serotypes in flavivirus-naive adults. J Infect Dis. 2010;201(3):370–377. doi: 10.1086/649916. - DOI - PubMed
    1. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med. 2015;373(13):1195–206. doi: 10.1056/NEJMoa1506223. - DOI - PubMed
    1. Betancourt-Cravioto M, Kuri-Morales P, Gonzalez-Roldan JF, Tapia-Conyer R, Mexican Dengue Expert G. Introducing a dengue vaccine to Mexico: development of a system for evidence-based public policy recommendations. PLoS Negl Trop Dis. 2014;8(7):e3009. doi: 10.1371/journal.pntd.0003009. - DOI - PMC - PubMed

MeSH terms