Comparative genomics and evolution of transcriptional regulons in Proteobacteria
- PMID: 28348857
- PMCID: PMC5343134
- DOI: 10.1099/mgen.0.000061
Comparative genomics and evolution of transcriptional regulons in Proteobacteria
Abstract
Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.
Keywords: Proteobacteria; amino acid metabolism; comparative genomics; transcription factor.
Figures






Similar articles
-
Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus.BMC Genomics. 2011 Jun 15;12 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2164-12-S1-S3. BMC Genomics. 2011. PMID: 21810205 Free PMC article.
-
Comparative genomics of pyridoxal 5'-phosphate-dependent transcription factor regulons in Bacteria.Microb Genom. 2016 Jan 18;2(1):e000047. doi: 10.1099/mgen.0.000047. eCollection 2016 Jan. Microb Genom. 2016. PMID: 28348826 Free PMC article.
-
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.BMC Genomics. 2013 Nov 1;14:745. doi: 10.1186/1471-2164-14-745. BMC Genomics. 2013. PMID: 24175918 Free PMC article.
-
Which came first, the transcriptional regulator or its target genes? An evolutionary perspective into the construction of eukaryotic regulons.Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194472. doi: 10.1016/j.bbagrm.2019.194472. Epub 2019 Dec 9. Biochim Biophys Acta Gene Regul Mech. 2020. PMID: 31825805 Review.
-
Recognition of regulatory sites by genomic comparison.Res Microbiol. 1999 Nov-Dec;150(9-10):755-71. doi: 10.1016/s0923-2508(99)00117-5. Res Microbiol. 1999. PMID: 10673013 Review.
Cited by
-
TyrR is involved in the transcriptional regulation of biofilm formation and D-alanine catabolism in Azospirillum brasilense Sp7.PLoS One. 2019 Feb 14;14(2):e0211904. doi: 10.1371/journal.pone.0211904. eCollection 2019. PLoS One. 2019. PMID: 30763337 Free PMC article.
-
Curation, inference, and assessment of a globally reconstructed gene regulatory network for Streptomyces coelicolor.Sci Rep. 2022 Feb 18;12(1):2840. doi: 10.1038/s41598-022-06658-x. Sci Rep. 2022. PMID: 35181703 Free PMC article.
-
Comparative Genomics of Sigma Factors in Acidithiobacillia Sheds Light into the Transcriptional Regulatory Networks Involved in Biogeochemical Dynamics in Extreme Acidic Environments.Microorganisms. 2025 May 24;13(6):1199. doi: 10.3390/microorganisms13061199. Microorganisms. 2025. PMID: 40572087 Free PMC article.
-
Towards a Dynamic Interaction Network of Life to unify and expand the evolutionary theory.BMC Biol. 2018 May 29;16(1):56. doi: 10.1186/s12915-018-0531-6. BMC Biol. 2018. PMID: 29843714 Free PMC article. Review.
-
How Bioinformatic Tools Guide Experiments To Resolve the Chaos of Apparently Unlimited Metabolic Variation.J Bacteriol. 2018 Dec 20;201(2):e00628-18. doi: 10.1128/JB.00628-18. Print 2019 Jan 15. J Bacteriol. 2018. PMID: 30373753 Free PMC article.
References
-
- Arias-Barrau E., Olivera E. R., Luengo J. M., Fernández C., Galán B., García J. L., Díaz E., Miñambres B. (2004). The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 1865062–5077. 10.1128/JB.186.15.5062-5077.2004 - DOI - PMC - PubMed
Data Bibliography
-
- Leyn, S. A., Suvorova, I. A., Kazakov, A. E., Ravcheev, D. A., Stepanova, V. V., Novichkov, P. S. & Rodionov, D. A. RegPrecise 4.0. Collection of regulogs for transcription factor families in Proteobacteria. http://regprecise.lbl.gov/RegPrecise/project_proteobacteria.jsp (2016).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous