Impact of Contaminating DNA in Whole-Genome Amplification Kits Used for Metagenomic Shotgun Sequencing for Infection Diagnosis
- PMID: 28356418
- PMCID: PMC5442535
- DOI: 10.1128/JCM.02402-16
Impact of Contaminating DNA in Whole-Genome Amplification Kits Used for Metagenomic Shotgun Sequencing for Infection Diagnosis
Abstract
Whole-genome amplification (WGA) is a useful tool for amplification of very small quantities of DNA for many uses, including metagenomic shotgun sequencing for infection diagnosis. Depending on the application, background DNA from WGA kits can be problematic. Three WGA kits were tested for their utility in a metagenomics approach to identify the pathogens in sonicate fluid comprised of biofilms and other materials dislodged from the surfaces of explanted prosthetic joints using sonication. The Illustra V2 Genomiphi, Illustra single cell Genomiphi, and Qiagen REPLI-g single cell kits were used to test identical sonicate fluid samples. Variations in the number of background reads, the genera identified in the background, and the number of reads from known pathogens known to be present in the samples were observed between kits. These results were then compared to those obtained with a library preparation without prior WGA using an NEBNext Ultra II paired-end kit, which requires a very small amount of input DNA. This approach also resulted in the presence of contaminant bacterial DNA and yielded fewer reads from the known pathogens. These findings highlight the impact that WGA kit selection can have on metagenomic analysis of low-biomass samples and the importance of the careful selection and consideration of the implications of using these tools.
Keywords: metagenomics; prosthetic joint infection; whole-genome amplification.
Copyright © 2017 American Society for Microbiology.
Figures
References
-
- Quan PL, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, Firth C, Palacios G, Baisre-De-Leon A, Paddock CD, Hutchison SK, Egholm M, Zaki SR, Goldman JE, Ochs HD, Lipkin WI. 2010. Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg Infect Dis 16:918–925. doi:10.3201/eid1606.091536. - DOI - PMC - PubMed
-
- Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, Salamat SM, Somasekar S, Federman S, Miller S, Sokolic R, Garabedian E, Candotti F, Buckley RH, Reed KD, Meyer TL, Seroogy CM, Galloway R, Henderson SL, Gern JE, DeRisi JL, Chiu CY. 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 370:2408–2417. doi:10.1056/NEJMoa1401268. - DOI - PMC - PubMed
-
- Hoffmann B, Tappe D, Hoper D, Herden C, Boldt A, Mawrin C, Niederstrasser O, Muller T, Jenckel M, van der Grinten E, Lutter C, Abendroth B, Teifke JP, Cadar D, Schmidt-Chanasit J, Ulrich RG, Beer M. 2015. A variegated squirrel bornavirus associated with fatal human encephalitis. N Engl J Med 373:154–162. doi:10.1056/NEJMoa1415627. - DOI - PubMed
-
- Naccache SN, Peggs KS, Mattes FM, Phadke R, Garson JA, Grant P, Samayoa E, Federman S, Miller S, Lunn MP, Gant V, Chiu CY. 2015. Diagnosis of neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by unbiased next-generation sequencing. Clin Infect Dis 60:919–923. doi:10.1093/cid/ciu912. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
