Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 26;139(16):5808-5816.
doi: 10.1021/jacs.6b12887. Epub 2017 Apr 14.

Quantifying the Electrostatics of Polycation-Lipid Bilayer Interactions

Affiliations

Quantifying the Electrostatics of Polycation-Lipid Bilayer Interactions

Julianne M Troiano et al. J Am Chem Soc. .

Abstract

Mechanistic insight into how polycations disrupt and cross cell membranes is needed for understanding and controlling polycation-membrane interactions, yet such information is surprisingly difficult to obtain at the molecular level. We use second harmonic and vibrational sum frequency generation spectroscopies along with quartz crystal microbalance with dissipation monitoring and computer simulations to quantify the interaction of poly(allylamine) hydrochloride (PAH) and its monomeric precursor allylamine hydrochloride (AH) with lipid bilayers. We find PAH adsorption to be reversible and nondisruptive to the bilayer under the conditions of our experiments. With an observed free adsorption energy of -52.7 ± 0.6 kJ/mol, PAH adsorption was found to be surprisingly less favorable relative to AH (-14.6 ± 0.4 kJ/mol) when considering a simple additive model. By experimentally quantifying the number of adsorbates and the average amount of charge carried by each adsorbate, we find that the PAH is associated with only 70% of the positive charges it could hold while the AH remains mostly charged while attached to the membrane. Simulations indicate that PAH pulls in condensed counterions from solution to avoid charge-repulsion along its backbone and with other PAH molecules to attach to, and completely cover, the bilayer surface. In addition, computations indicate that the amine groups shift their pKa values due to the confined environment upon adsorption to the surface. Our results provide experimental constraints for theoretical calculations, which yield atomistic views of the structures that are formed when polycations interact with lipid membranes that will be important for predicting polycation-membrane interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources