Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 1;72(4):1103-1108.
doi: 10.1093/jac/dkw422.

Changing epidemiology of candidaemia in Australia

Affiliations

Changing epidemiology of candidaemia in Australia

Belinda Chapman et al. J Antimicrob Chemother. .

Erratum in

  • Changing epidemiology of candidaemia in Australia.
    Chapman B, Slavin M, Marriott D, Halliday C, Kidd S, Arthur I, Bak N, Heath CH, Kennedy K, Morrissey CO, Sorrell TC, van Hal S, Keighley C, Goeman E, Underwood N, Hajkowicz K, Hofmeyr A, Leung M, Macesic N, Botes J, Blyth C, Cooley L, George CR, Kalukottege P, Kesson A, McMullan B, Baird R, Robson J, Korman TM, Pendle S, Weeks K, Liu E, Cheong E, Chen S; Australian and New Zealand Mycoses Interest Group. Chapman B, et al. J Antimicrob Chemother. 2017 Apr 1;72(4):1270. doi: 10.1093/jac/dkx047. J Antimicrob Chemother. 2017. PMID: 28204502 No abstract available.

Abstract

Objectives: Knowledge of contemporary epidemiology of candidaemia is essential. We aimed to identify changes since 2004 in incidence, species epidemiology and antifungal susceptibilities of Candida spp. causing candidaemia in Australia.

Methods: These data were collected from nationwide active laboratory-based surveillance for candidaemia over 1 year (within 2014-2015). Isolate identification was by MALDI-TOF MS supplemented by DNA sequencing. Antifungal susceptibility testing was performed using Sensititre YeastOne™.

Results: A total of 527 candidaemia episodes (yielding 548 isolates) were evaluable. The mean annual incidence was 2.41/105 population. The median patient age was 63 years (56% of cases occurred in males). Of 498 isolates with confirmed species identity, Candida albicans was the most common (44.4%) followed by Candida glabrata complex (26.7%) and Candida parapsilosis complex (16.5%). Uncommon Candida species comprised 25 (5%) isolates. Overall, C. albicans (>99%) and C. parapsilosis (98.8%) were fluconazole susceptible. However, 16.7% (4 of 24) of Candida tropicalis were fluconazole- and voriconazole-resistant and were non-WT to posaconazole. Of C. glabrata isolates, 6.8% were resistant/non-WT to azoles; only one isolate was classed as resistant to caspofungin (MIC of 0.5 mg/L) by CLSI criteria, but was micafungin and anidulafungin susceptible. There was no azole/echinocandin co-resistance.

Conclusions: We report an almost 1.7-fold proportional increase in C. glabrata candidaemia (26.7% versus 16% in 2004) in Australia. Antifungal resistance was generally uncommon, but azole resistance (16.7% of isolates) amongst C. tropicalis may be emerging.

PubMed Disclaimer

MeSH terms

LinkOut - more resources