Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 Aug:40:91-98.
doi: 10.1016/j.jcrc.2017.03.021. Epub 2017 Mar 27.

Assessment of macro- and micro-oxygenation parameters during fractional fluid infusion: A pilot study

Affiliations
Observational Study

Assessment of macro- and micro-oxygenation parameters during fractional fluid infusion: A pilot study

Marc-Olivier Fischer et al. J Crit Care. 2017 Aug.

Abstract

Purpose: The main goal of this study was to assess whether maximal fluid infusion improves both oxygen delivery (DO2) and micro-circulatory parameters during hemodilution. The secondary objective was to assess the ability of baseline micro-circulatory parameters to predict oxygen consumption (VO2) response following fluid infusion.

Materials and methods: In a postoperative cardiac ICU, patients received repeated fluid infusion until stroke volume (SV) was maximized. Before and after each fluid expansion, macro- (DO2, VO2) and micro-circulatory oxygenation parameters were recorded [central venous oxygen saturation (ScVO2), blood lactate, difference in veno-arterial carbon dioxide tension (P(v-a)CO2), somatic and cerebral oxygen saturation (rSO2)]. Patients were classified as VO2-Responders or VO2-Non-Responders according to an increase in VO2 above or below 15%, respectively.

Results: After maximal fluid infusion, all patients showed improved macro- and micro-circulatory oxygenation parameters, but VO2-Responders had lower values (especially for ScVO2 and cerebral rSO2). Only baseline ScVO2 and cerebral rSO2 were useful to predict the VO2 response to maximal fluid infusion (ROCAUC 0.80 (95% CI: 0.54-0.95, P=0.012) and 0.83 (95% CI: 0.57-0.96, P=0.001).

Conclusions: Maximal fluid infusion improves macro- and micro-circulatory oxygenation parameters. For VO2-Responders, only ScVO2 and cerebral rSO2 could serve as markers of tissue hypoxia.

Keywords: Cardiac output; Fluid loading; Oxygen consumption; Oxygen delivery.

PubMed Disclaimer

Publication types

LinkOut - more resources