Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 3;7(3):1766-1770.
doi: 10.1021/acscatal.6b03665. Epub 2017 Feb 6.

Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst

Affiliations

Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst

Niki R Patel et al. ACS Catal. .

Abstract

An operationally simple, mild, redox-neutral method for the photoredox alkylation of imines is reported. Utilizing an inexpensive organic photoredox catalyst, alkyl radicals are readily generated from the single-electron oxidation of ammonium alkyl bis(catecholato)silicates and are subsequently engaged in a C-C bond-forming reaction with imines. The process is highly selective, metal-free, and does not require a large excess of the alkylating reagent or the use of acidic additives.

Keywords: hypervalent silicon; imines; photocatalysis; radical alkylation; visible light.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Comparison of the Envisioned Photoredox-Mediated Radical Addition to Imines by Alkylsilicate Radical Precursors vs Standard Alkylation Approaches: (a) via Traditional Organometallic Reagents; (b) via Stoichiometric Generation of Radicals; (c) Alternate Photoredox-Based Approach Using Alkylsilicates
Figure 1
Figure 1
Postulated mechanistic pathways for imine alkylation.
Scheme 2
Scheme 2. Successive Photoredox-Catalyzed Alkylation/Cross-Coupling Reactions Alkylsilicates
Scheme 3
Scheme 3. Chemoselectivity in Photoredox Alkylation

Similar articles

Cited by

References

    1. Prier C. K.; Rankic D. A.; Macmillan D. W. C. Chem. Rev. 2013, 113, 5322–5363. 10.1021/cr300503r. - DOI - PMC - PubMed
    2. Narayanam J. M. R.; Stephenson C. R. J. Chem. Soc. Rev. 2011, 40, 102–113. 10.1039/B913880N. - DOI - PubMed
    3. Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075–10166. 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    4. Shaw M. H.; Twilton J.; Macmillan D. W. C. J. Org. Chem. 2016, 81, 6898–6926. 10.1021/acs.joc.6b01449. - DOI - PMC - PubMed
    1. For seminal reports, see:

    2. Tellis J. C.; Primer D. N.; Molander G. A. Science 2014, 345, 433–436. 10.1126/science.1253647. - DOI - PMC - PubMed
    3. Zuo Z.; Ahneman D. T.; Chu L.; Terrett J. A.; Doyle A. G.; MacMillan D. W. C. Science 2014, 345, 437–440. 10.1126/science.1255525. - DOI - PMC - PubMed
    4. For reviews, see:

    5. Tellis J. C.; Kelly C. B.; Primer D. N.; Jouffroy M.; Patel N. R.; Molander G. A. Acc. Chem. Res. 2016, 49, 1429–1439. 10.1021/acs.accounts.6b00214. - DOI - PMC - PubMed
    6. Skubi K. L.; Blum T. R.; Yoon T. P. Chem. Rev. 2016, 116, 10035–10074. 10.1021/acs.chemrev.6b00018. - DOI - PMC - PubMed
    7. Gui Y.-Y.; Sun L.; Lu Z.-P.; Yu D.-G. Org. Chem. Front. 2016, 3, 522–526. 10.1039/C5QO00437C. - DOI
    1. Jouffroy M.; Primer D. N.; Molander G. A. J. Am. Chem. Soc. 2016, 138, 475–478. 10.1021/jacs.5b10963. - DOI - PMC - PubMed
    2. Corce V.; Chamoreau L.-M.; Derat E.; Goddard J.-P.; Ollivier C.; Fensterbank L. Angew. Chem., Int. Ed. 2015, 54, 11414–11418. 10.1002/anie.201504963. - DOI - PubMed
    1. Patel N. R.; Kelly C. B.; Jouffroy M.; Molander G. A. Org. Lett. 2016, 18, 764–767. 10.1021/acs.orglett.6b00024. - DOI - PMC - PubMed
    2. Lévêque C.; Chenneberg L.; Corcé V.; Goddard J.-P.; Ollivier C.; Fensterbank L. Org. Chem. Front. 2016, 3, 462–465. 10.1039/C6QO00014B. - DOI
    1. Jouffroy M.; Davies G. H. M.; Molander G. A. Org. Lett. 2016, 18, 1606–1609. 10.1021/acs.orglett.6b00466. - DOI - PMC - PubMed