Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar;233(3):2133-2145.
doi: 10.1002/jcp.25936. Epub 2017 May 23.

Roles of neurotrophins in skeletal tissue formation and healing

Affiliations
Review

Roles of neurotrophins in skeletal tissue formation and healing

Yu-Wen Su et al. J Cell Physiol. 2018 Mar.

Abstract

Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.

Keywords: angiogenesis; bone fracture healing; growth plate repair; neurotrophins; osteogenesis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources