Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 4;16(1):68.
doi: 10.1186/s12944-017-0445-2.

Fatty acid composition in serum cholesterol esters and phospholipids is linked to visceral and subcutaneous adipose tissue content in elderly individuals: a cross-sectional study

Affiliations

Fatty acid composition in serum cholesterol esters and phospholipids is linked to visceral and subcutaneous adipose tissue content in elderly individuals: a cross-sectional study

Fredrik Rosqvist et al. Lipids Health Dis. .

Abstract

Background: Visceral adipose tissue (VAT) and truncal fat predict cardiometabolic disease. Intervention trials suggest that saturated fatty acids (SFA), e.g. palmitic acid, promote abdominal and liver fat storage whereas polyunsaturated fatty acids (PUFA), e.g. linoleic acid, prevent fat accumulation. Such findings require investigation in population-based studies of older individuals. We aimed to investigate the relationships of serum biomarkers of PUFA intake as well as serum levels of palmitic acid, with abdominal and total adipose tissue content.

Methods: In a population-based sample of 287 elderly subjects in the PIVUS cohort, we assessed fatty acid composition in serum cholesterol esters (CE) and phospholipids (PL) by gas chromatography and the amount of VAT and abdominal subcutaneous (SAT) adipose tissue by magnetic resonance imaging (MRI), liver fat by MR spectroscopy (MRS), and total body fat, trunk fat and leg fat by dual-energy X-ray absorptiometry (DXA). Insulin resistance was estimated by HOMA-IR.

Results: VAT and trunk fat showed the strongest correlation with insulin resistance (r = 0.49, P < 0.001). Linoleic acid in both CE and PL was inversely related to all body fat depots (r = -0.24 to -0.33, P < 0.001) including liver fat measured in a sub-group (r = -0.26, P < 0.05, n = 73), whereas n-3 PUFA showed weak inverse (18:3n-3) or positive (20:5n-3) associations. Palmitic acid in CE, but not in PL, was directly correlated with VAT (r = 0.19, P < 0.001) and trunk fat (r = 0.18, P = 0.003). Overall, the significant associations remained after adjusting for energy intake, height, alcohol, sex, smoking, education and physical activity. The inverse correlation between linoleic acid and VAT remained significant after further adjustment for total body fat.

Conclusions: Serum linoleic acid is inversely related to body fat storage including VAT and trunk fat whereas palmitic acid was less consistently but directly associated, in line with recent feeding studies. Considering the close link between VAT and insulin resistance, a potential preventive role of plant-based PUFA in VAT accumulation warrants further study.

Keywords: Adipose tissue distribution; Body fat; Fatty acid; Linoleic acid; Palmitic acid; Polyunsaturated fat; Saturated fat; Visceral adipose tissue.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Correlations between serum fatty acids and desaturase indices in serum cholesterol esters (a) and serum phospholipids (b) and adipose tissue depots. Bars are Pearson correlation coefficient (r). The correlation coefficient is given as a number beside the bar for all significant correlations (P < 0.05). Abbreviations: PA, palmitic acid; LA, linoleic acid; ALA, alpha-linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; SCD, stearoyl-CoA desaturase; D5D, delta-5 desaturase; D6D, delta-6 desaturase; HOMA, homeostasis model of assessment insulin resistance

References

    1. Borel AL, Nazare JA, Smith J, Almeras N, Tremblay A, Bergeron J, Poirier P, Despres JP. Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program. Obesity (Silver Spring Md. 2012;20(6):1223–33. doi: 10.1038/oby.2011.396. - DOI - PubMed
    1. Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care. 2000;23(4):465–71. doi: 10.2337/diacare.23.4.465. - DOI - PubMed
    1. Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, Grundy SM, Khera A, McGuire DK, de Lemos JA. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308(11):1150–9. doi: 10.1001/2012.jama.11132. - DOI - PMC - PubMed
    1. Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, Meigs JB, Sutherland P, D’Agostino RB, Sr, O’Donnell CJ, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring. MD. 2010;18(11):2191–8. - PMC - PubMed
    1. Rosqvist F, Iggman D, Kullberg J, Jonathan Cedernaes J, Johansson HE, Larsson A, Johansson L, Ahlstrom H, Arner P, Dahlman I, et al. Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans. Diab. 2014. Epub 2014/02/20. - PubMed

LinkOut - more resources