Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 4;9(4):358.
doi: 10.3390/nu9040358.

Dietary Metabolites and Chronic Kidney Disease

Affiliations
Review

Dietary Metabolites and Chronic Kidney Disease

Sho Hasegawa et al. Nutrients. .

Abstract

Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.

Keywords: ">d-amino acids; advanced glycated end products; chronic kidney disease; indoxyl sulfate; nutrients; palmitate; uremic toxins.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Glycative stress and chronic kidney disease (CKD). Glycative stress caused by uremic toxins, such as AGEs, derived from glycation is closely associated with CKD progression through the activation of the AGE-RAGE system. AGEs; Advanced glycated end products, RAGE; the receptor for AGEs, PTC; proximal tubular epithelial cells.
Figure 2
Figure 2
Pathogenic effects of indoxyl sulfate as a uremic toxin. Indoxyl sulfate induces renal tubulointerstitial (TI) fibrosis, renal proximal tubular cell (PTC) senescence, vascular endothelial dysfunction, vascular smooth muscle cell (SMC) senescence, and chronic renal hypoxia, all of which lead to CKD progression. PAI-1; plasminogen activator inhibitor-1, NF-κB; nuclear factor-kappa B, STAT3; signal transducer and activator of transcription 3, CITED2; Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2, HIF-α; hypoxia-inducible factor-α, EPO; erythropoietin.

Similar articles

Cited by

References

    1. Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004;351:1296–1305. doi: 10.1056/NEJMoa041031. - DOI - PubMed
    1. Vanholder R., De Smet R., Glorieux G., Argiles A., Baurmeister U., Brunet P., Clark W., Cohen G., De Deyn P.P., Deppisch R., et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943. doi: 10.1046/j.1523-1755.2003.00924.x. - DOI - PubMed
    1. Pollock C., Voss D., Hodson E., Crompton C., The CARI guidelines Nutrition and growth in kidney disease. Nephrology. 2005;10:S177–S230. doi: 10.1111/j.1440-1797.2005.00506.x. - DOI - PubMed
    1. Palmer S.C., Hayen A., Macaskill P., Pellegrini F., Craig J.C., Elder G.J., Strippoli G.F. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: A systematic review and meta-analysis. JAMA. 2011;305:1119–1127. doi: 10.1001/jama.2011.308. - DOI - PubMed
    1. Lau W.L., Kalantar-Zadeh K., Vaziri N.D. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130:92–98. doi: 10.1159/000381990. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources