Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 15;26(12):2346-2363.
doi: 10.1093/hmg/ddx113.

Discovery of novel heart rate-associated loci using the Exome Chip

Marten E van den Berg  1 Helen R Warren  2   3 Claudia P Cabrera  2   3 Niek Verweij  4 Borbala Mifsud  2   3 Jeffrey Haessler  5 Nathan A Bihlmeyer  6 Yi-Ping Fu  7 Stefan Weiss  8   9 Henry J Lin  10   11 Niels Grarup  12 Ruifang Li-Gao  13 Giorgio Pistis  14   15 Nabi Shah  16   17 Jennifer A Brody  18 Martina Müller-Nurasyid  19   20   21 Honghuang Lin  22 Hao Mei  23 Albert V Smith  24   25 Leo-Pekka Lyytikäinen  26 Leanne M Hall  27   28 Jessica van Setten  29 Stella Trompet  30   31 Bram P Prins  32   33 Aaron Isaacs  34 Farid Radmanesh  35   36 Jonathan Marten  37 Aiman Entwistle  2   3 Jan A Kors  1 Claudia T Silva  38   39   40 Alvaro Alonso  41 Joshua C Bis  18 Rudolf de Boer  4 Hugoline G de Haan  13 Renée de Mutsert  13 George Dedoussis  42 Anna F Dominiczak  43 Alex S F Doney  44 Patrick T Ellinor  36   45 Ruben N Eppinga  4 Stephan B Felix  46 Xiuqing Guo  10 Yanick Hagemeijer  4 Torben Hansen  12 Tamara B Harris  47 Susan R Heckbert  48   49 Paul L Huang  45 Shih-Jen Hwang  50 Mika Kähönen  51 Jørgen K Kanters  52 Ivana Kolcic  53 Lenore J Launer  47 Man Li  54 Jie Yao  10 Allan Linneberg  55   56   57 Simin Liu  58 Peter W Macfarlane  59 Massimo Mangino  60   61 Andrew D Morris  62 Antonella Mulas  14 Alison D Murray  63 Christopher P Nelson  27   28 Marco Orrú  64 Sandosh Padmanabhan  43   65 Annette Peters  20   66   67 David J Porteous  68 Neil Poulter  69 Bruce M Psaty  70   71 Lihong Qi  72 Olli T Raitakari  73 Fernando Rivadeneira  74 Carolina Roselli  75 Igor Rudan  62 Naveed Sattar  76 Peter Sever  77 Moritz F Sinner  20   21 Elsayed Z Soliman  78 Timothy D Spector  60 Alice V Stanton  79 Kathleen E Stirrups  2   80 Kent D Taylor  81   82   83 Martin D Tobin  84 André Uitterlinden  85 Ilonca Vaartjes  86 Arno W Hoes  87 Peter van der Meer  4 Uwe Völker  8   9 Melanie Waldenberger  20   88   66 Zhijun Xie  22 Magdalena Zoledziewska  14 Andrew Tinker  2   3 Ozren Polasek  53   88 Jonathan Rosand  35   36 Yalda Jamshidi  89 Cornelia M van Duijn  38 Eleftheria Zeggini  90 J Wouter Jukema  30 Folkert W Asselbergs  29   91   92 Nilesh J Samani  27   28 Terho Lehtimäki  93 Vilmundur Gudnason  24   25 James Wilson  94 Steven A Lubitz  36   45 Stefan Kääb  20   21 Nona Sotoodehnia  95 Mark J Caulfield  2   3 Colin N A Palmer  44 Serena Sanna  14 Dennis O Mook-Kanamori  13   96 Panos Deloukas  2 Oluf Pedersen  12 Jerome I Rotter  97 Marcus Dörr  46 Chris J O'Donnell  98 Caroline Hayward  37 Dan E Arking  99 Charles Kooperberg  5 Pim van der Harst  4 Mark Eijgelsheim  100 Bruno H Stricker  100 Patricia B Munroe  2   3
Affiliations

Discovery of novel heart rate-associated loci using the Exome Chip

Marten E van den Berg et al. Hum Mol Genet. .

Abstract

Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic flow diagram of the study design. N, sample size; SKAT, SNV-set Kernel Association Test; P, P-value; LD, linkage disequilibrium; SNV, single nucleotide variant; GCTA, Genome-wide Complex Traits Analysis software; 1958BC, 1958 Birth Cohort; UKB, UK Biobank.
Figure 2
Figure 2
Manhattan plot for the RR-interval discovery meta-analysis in European individuals. The Manhattan plot displays the results from the discovery meta-analysis of RR-intervals from N = 104,452 individuals of European ancestry (from 30 cohorts). On the X axis, P-values are expressed as −log10(P) are plotted according to physical genomic locations by chromosome. The Y-axis is truncated to −log10(P) = 20 with any variants with P < 1 × 10−20 displayed on the −log10(P) = 20 line. The nine novel variants validated from the combined meta-analysis with UK Biobank data are represented by squares. Variants in linkage disequilibrium (LD; r2 > 0.8) with published GWAS variants are highlighted with black circles (12). New secondary variants validated in our analysis are indicated as triangles. Locus names of the novel loci correspond to the nearest annotated gene, with 5p13.3 denoting an intergenic variant. The dashed line indicates a P-value threshold of 1 × 10−5, corresponding to the lookup significance threshold and the continuous line indicates a P-value threshold of 2 × 10−7, corresponding to exome-wide significance.
Figure 3
Figure 3
Enrichment of HR-SNVs in DNase I hypersensitive sites of 299 tissue samples. The right panel shows the enrichment of the combined known and novel (all) HR-SNVs in DNase I hypersensitivity sites of 212 Roadmap Epigenome tissue samples (those with positive Z-scores). Enrichment is expressed as a Z-score compared with the distribution of 1000 matched background SNV sets. Significant enrichments are shown in red (Z-score ≥ 2.58, false discovery rate (FDR) <1.5%), enrichments below this threshold are shown in blue. The left panel shows the enrichment difference (ΔZscore= ZscoreallZscoreknown) for those tissue samples in which we found significant enrichment using all SNPs and that further show a positive change using all SNVs compared with only known SNVs, with increased enrichment hence due to the novel loci identified.

Similar articles

Cited by

  • Genetic Risk Scores for Complex Disease Traits in Youth.
    Xie T, Wang B, Nolte IM, van der Most PJ, Oldehinkel AJ, Hartman CA, Snieder H. Xie T, et al. Circ Genom Precis Med. 2020 Aug;13(4):e002775. doi: 10.1161/CIRCGEN.119.002775. Epub 2020 Jun 11. Circ Genom Precis Med. 2020. PMID: 32527150 Free PMC article.
  • Potential functional variants of KIAA genes are associated with breast cancer risk in a case control study.
    Zhou J, Chen C, Liu S, Zhou W, Du J, Jiang Y, Dai J, Jin G, Ma H, Hu Z, Chen J, Shen H. Zhou J, et al. Ann Transl Med. 2021 Apr;9(7):549. doi: 10.21037/atm-20-6108. Ann Transl Med. 2021. PMID: 33987247 Free PMC article.
  • Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.
    Erzurumluoglu AM, Liu M, Jackson VE, Barnes DR, Datta G, Melbourne CA, Young R, Batini C, Surendran P, Jiang T, Adnan SD, Afaq S, Agrawal A, Altmaier E, Antoniou AC, Asselbergs FW, Baumbach C, Bierut L, Bertelsen S, Boehnke M, Bots ML, Brazel DM, Chambers JC, Chang-Claude J, Chen C, Corley J, Chou YL, David SP, de Boer RA, de Leeuw CA, Dennis JG, Dominiczak AF, Dunning AM, Easton DF, Eaton C, Elliott P, Evangelou E, Faul JD, Foroud T, Goate A, Gong J, Grabe HJ, Haessler J, Haiman C, Hallmans G, Hammerschlag AR, Harris SE, Hattersley A, Heath A, Hsu C, Iacono WG, Kanoni S, Kapoor M, Kaprio J, Kardia SL, Karpe F, Kontto J, Kooner JS, Kooperberg C, Kuulasmaa K, Laakso M, Lai D, Langenberg C, Le N, Lettre G, Loukola A, Luan J, Madden PAF, Mangino M, Marioni RE, Marouli E, Marten J, Martin NG, McGue M, Michailidou K, Mihailov E, Moayyeri A, Moitry M, Müller-Nurasyid M, Naheed A, Nauck M, Neville MJ, Nielsen SF, North K, Perola M, Pharoah PDP, Pistis G, Polderman TJ, Posthuma D, Poulter N, Qaiser B, Rasheed A, Reiner A, Renström F, Rice J, Rohde R, Rolandsson O, Samani NJ, Samuel M, Schlessinger D, Scholte SH, Scott RA, Sever P, Shao Y, Shrine N, Smith JA, Starr JM, Stirrups K, Stram D,… See abstract for full author list ➔ Erzurumluoglu AM, et al. Mol Psychiatry. 2020 Oct;25(10):2392-2409. doi: 10.1038/s41380-018-0313-0. Epub 2019 Jan 7. Mol Psychiatry. 2020. PMID: 30617275 Free PMC article.
  • Slowing Heart Rate Protects Against Pathological Cardiac Hypertrophy.
    Sebastian S, Weinstein LS, Ludwig A, Munroe P, Tinker A. Sebastian S, et al. Function (Oxf). 2022 Nov 1;4(1):zqac055. doi: 10.1093/function/zqac055. eCollection 2023. Function (Oxf). 2022. PMID: 36540889 Free PMC article.
  • Dissecting mechanisms of chamber-specific cardiac differentiation and its perturbation following retinoic acid exposure.
    Gonzalez DM, Schrode N, Ebrahim TAM, Broguiere N, Rossi G, Drakhlis L, Zweigerdt R, Lutolf MP, Beaumont KG, Sebra R, Dubois NC. Gonzalez DM, et al. Development. 2022 Jul 1;149(13):dev200557. doi: 10.1242/dev.200557. Epub 2022 Jul 8. Development. 2022. PMID: 35686629 Free PMC article.

References

    1. Aladin A.I., Whelton S.P., Al-Mallah M.H., Blaha M.J., Keteyian S.J., Juraschek S.P., Rubin J., Brawner C.A., Michos E.D. (2014) Relation of resting heart rate to risk for all-cause mortality by gender after considering exercise capacity (the Henry Ford exercise testing project). Am. J. Cardiol., 114, 1701–1706. - PubMed
    1. Carlson N., Dixen U., Marott J.L., Jensen M.T., Jensen G.B. (2014) Predictive value of casual ECG-based resting heart rate compared with resting heart rate obtained from Holter recording. Scand. J. Clin. Lab. Invest., 74, 163–169. - PubMed
    1. Fox K., Bousser M.G., Amarenco P., Chamorro A., Fisher M., Ford I., Hennerici M.G., Mattle H.P., Rothwell P.M. (2013) Heart rate is a prognostic risk factor for myocardial infarction: a post hoc analysis in the PERFORM (Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack) study population. Int. J. Cardiol., 168, 3500–3505. - PubMed
    1. Woodward M., Webster R., Murakami Y., Barzi F., Lam T.H., Fang X., Suh I., Batty G.D., Huxley R., Rodgers A. (2014) The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur. J. Prev. Cardiol., 21, 719–726. - PubMed
    1. Jouven X., Zureik M., Desnos M., Guerot C., Ducimetiere P. (2001) Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc. Res., 50, 373–378. - PubMed

Grants and funding