Whole transcriptome profiling of the human hippocampus suggests an involvement of the KIBRA rs17070145 polymorphism in differential activation of the MAPK signaling pathway
- PMID: 28380666
- PMCID: PMC5501956
- DOI: 10.1002/hipo.22731
Whole transcriptome profiling of the human hippocampus suggests an involvement of the KIBRA rs17070145 polymorphism in differential activation of the MAPK signaling pathway
Abstract
The rs17070145-T variant of the WWC1 gene, coding for the KIBRA protein, has been associated with both increased episodic memory performance and lowered risk for late onset Alzheimer's disease, although the mechanism behind this protective effect has not been completely elucidated. To achieve a better understanding of the pathways modulated by rs17070145 and its associated functional variant(s), we used laser capture microdissection (LCM) and RNA-sequencing to investigate the effect of rs17070145 genotypes on whole transcriptome expression in the human hippocampus (HP) of 22 neuropathologically normal individuals, with a specific focus on the dentate gyrus (DG) and at the pyramidal cells (PC) of CA1 and CA3 sub-regions. Differential expression analysis of RNA-seq data within the HP based on the rs17070145 genotype revealed an overexpression of genes involved in the MAPK signaling pathway, potentially driven by the T/T genotype. The most important contribution comes from genes dysregulated within the DG region. Other genes significantly dysregulated, and not involved in the MAPK pathway (Adj P < 0.01 and Fold Change > |1.00|) were: RSPO4 (HP); ARC, DUSP5, DNAJB5, EGR4, PPP1R15A, WBP11P1, EGR1, GADD45B (DG); CH25H, HSPA1A, HSPA1B, TNFSF9, and NPAS4 (PC). Several evidences suggested that the MAPK signaling pathway is linked with memory and learning processes. In non-neuronal cells, the KIBRA protein is phosphorylated by ERK1/2 (involved in the MAPK signaling) in cells as well as in vitro. Several of the other dysregulated genes are involved in memory and learning processes, as well as in Alzheimer's Disease. In conclusion, our results suggest that the effect of the WWC1 rs17070145 polymorphism on memory performance and Alzheimer's disease might be due to a differential regulation of the MAPK signaling, a key pathway involved in memory and learning processes.
Keywords: RNAseq; WWC1; dentate gyrus; memory; pyramidal cells.
© 2017 Wiley Periodicals, Inc.
Figures



References
-
- Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology. 2015;35:354–389. - PMC - PubMed
-
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B. 1995;57:289–300.
-
- Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze; 1936.
-
- Boraxbekk CJ, Ames D, Kochan NA, Lee T, Thalamuthu A, Wen W, Armstrong NJ, Kwok JB, Schofield PR, Reppermund S, Wright MJ, Trollor JN, Brodaty H, Sachdev P, Mather KA. Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. Neuropsychologia. 2015;78:10–17. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous