Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Mar;47(2):151-159.
doi: 10.4070/kcj.2016.0207. Epub 2017 Feb 21.

Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

Affiliations
Review

Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

Hyung Joon Joo et al. Korean Circ J. 2017 Mar.

Abstract

Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

Keywords: Adipose tissue; Myocardium; Regeneration; Stem cell.

PubMed Disclaimer

Conflict of interest statement

The authors have no financial conflicts of interest.

Figures

Fig. 1
Fig. 1. Effects of ADSCs on myocardial regeneration. ADSCs can be harvested readily, safely, and abundantly by liposuction. They can be cultured in vitro and differentiated into cardiomyocytes and other mesenchymal cells through direct transdifferentiation or cell-fusion. When transplanted into the infarcted myocardium by IC infusion or IM injection, ADSCs might contribute towards improvement in cardiac function. The suggested mechanisms include their paracrine effects modulating inflammatory response and inducing neoangiogenesis under hypoxic stress. ADSCs: adipose tissue-derived stem cells, IC: intracoronary, IM: intramuscular.

References

    1. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129:1483–1492. - PMC - PubMed
    1. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15:641–648. - PMC - PubMed
    1. Hong SJ, Traktuev DO, March KL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010;15:86–91. - PubMed
    1. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228. - PubMed
    1. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7:729–741. - PubMed